Question

Propane (g) is heated from 20°C to 200°C at 2.5 bar. Steam at 200°C and 5.0 bar enters the same heater and exits as a saturat

0 0
Add a comment Improve this question Transcribed image text
Answer #1

SOLUTION.

To find = The Specific enthalpies of given streams.

Given = gas -gas heat exchanger used to heat propane from the steam.

Sp volume of propane =0.0104 m³/mol

For steam we obtained values of enthalpy from steam table

Property Inlet outlet
Temperature 200 °C -
Pressure 5 bar 5 bar
Quality of steam - 0
Sp. Enthalpy Hb=2856 kJ/kg Hd=640 kJ/kg

Mass of steam entering and leaving is same hence there is Steady state Conditions exist in the heat exchanger.

Mass in =0.8 kg=m

Heat transferred from steam =m*(Hb-Hd)=0.8 kg*(2856-640) kJ/kg =1772.8 kJ

Assuming no heat losses to the surrounding all heat transfer from steam is to the propane steam.

Qsteam = Qpropane .....(kJ)

For propane

Moles = 100 moles

Mol wt = 44 gm/mol

Mass in = 44*100(gm/mol *moles) = 4400 gm=4.4 kg

Property in out
Temp 20 °C 200 °C
Pressure 2.5 bar 2.5 bar
Sp volume 0.0104 m³/kg -

Qpropane = 1772.8 kJ = m(hc-ha)

hc-ha= 1772.8 kJ/(100 mol) = 17.728 kJ/mol

Dear student,
I am waiting for your feedback. I have given my 100% to solve your queries. If you are satisfied by my given answer. Can you please like it☺

Add a comment
Know the answer?
Add Answer to:
Propane (g) is heated from 20°C to 200°C at 2.5 bar. Steam at 200°C and 5.0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Propane (g) is heated from 20°C to 200°C at 2.5 bar. Steam at 200°C and 5.0...

    Propane (g) is heated from 20°C to 200°C at 2.5 bar. Steam at 200°C and 5.0 bar enters the same heater and exits as a saturated liquid at the same pressure. Taking a basis of 100 mole of propane fed to the exchanger, calculate the values of the specific enthalpies (H) in the following table. The specific volume of propane is 0.0104 m3/mol. Use the gas constant table for conversions if necessary. Species nin Specific nout Specific Enthalpy Enthalpy C3H8...

  • An adiabatic heat exchanger is one for which no heat is exchanged with the surroundings. All...

    An adiabatic heat exchanger is one for which no heat is exchanged with the surroundings. All of the heat lost by the hot stream is transferred to the cold stream in this adiabatic process. In a proposed process, propane gas enters a continuous adiabatic heat exchanger at 45 °C and 265 kPa and exits at 255 °C. Superheated steam at 300 °C and 7.0 bar enters the exchanger flowing countercurrently to the propane and exits as a saturated liquid at...

  • Propane gas enters a continuous adiabatic heat exchanger 240°C. Superheated steam at 300 C and 5 bar enters the exchang...

    Propane gas enters a continuous adiabatic heat exchanger 240°C. Superheated steam at 300 C and 5 bar enters the exchanger flowing countercurrently to the propane and exits as a saturated liquid at the same pressure at 40 C and 250 kPa and exits at Taking flow chart. Include both mass and volumes on your inlet and outlet streams. b. Calculate the specific enthalpy values for the inlet and outlet streams. c. Use an energy balance to calculate the required mass...

  • A steam power plant design consists of an ideal Rankine cycle with regeneration. Steam enters Turbine...

    A steam power plant design consists of an ideal Rankine cycle with regeneration. Steam enters Turbine 1 at P1 and T1 at the rate of m1 and exits at P2. A fraction (y') of the steam exiting Turbine 1 is diverted to a closed feedwater heater while the remainder enters Turbine 2. A portion (y'') of the steam exiting Turbine 2 at P3 is diverted to an open feedwater heater while the remainder enters Turbine 3. The exit of Turbine...

  • A steam power plant design consists of an ideal Rankine cycle with reheat and regeneration. Steam...

    A steam power plant design consists of an ideal Rankine cycle with reheat and regeneration. Steam enters Turbine 1 at P1 and T1 at the rate of m1 and exits at P2. A fraction (y') of the steam exiting Turbine 1 is diverted to a closed feedwater heater while the remainder is reheated to T3 before entering Turbine 2. A fraction (y'') of the steam exiting Turbine 2 at P4 is diverted to an open feedwater heater while the remainder...

  • A proposed steam power plant design consists of an ideal Rankine cycle with reheat and regeneration....

    A proposed steam power plant design consists of an ideal Rankine cycle with reheat and regeneration. Steam enters Turbine 1 at Pl and T1 at the rate of mi and exits at P2. A fraction () of the steam exiting Turbine 1 is diverted to an open feedwater heater while the remainder is reheated to T3 before entering Turbine 2. The condenser operates at P4. Saturated liquid exits the condenser and is fed to Pump 1. The outlet of Pump...

  • A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits from the pipe at 240*C and the same pressure. Superheated steam at 315 C...

    A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits from the pipe at 240*C and the same pressure. Superheated steam at 315 C and 5.0 bars enters the outer (annular) pipe, flowing counter-currently to the ethane, and exits as a saturated vapor at the same pressure. Neglecting the heat losses from the heat exchanger to its surroundings. Draw a diagram of the process. (5) What are the...

  • Q4/ Toluene gas (CH3) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and...

    Q4/ Toluene gas (CH3) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam fed/mºtoluene...

  • pls Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa)...

    pls Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam...

  • please Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa)...

    please Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT