Question

A spring-mass-dashpot system with m=1, k= 2 and c= 2 (in their respective units) hangs in equilibrium. At time t=0, an extern

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ang Given m=l, K=2, C = 2 i fcts = (71-IN we Know 9. cf motion is: myl tcytky =flt) (1) y + 2y + 2y = 17-t) y tayt2y = (22 => 20 + 4ct+2D + 2ct +2.00 +26 = -t Now compase both Side 26+2D = a 2C =0 > C=o 4C+2) = -1 E = 1/2+12 O+2) = -1 D-12 E = THy(t) = et (A cost + 8 Sint) + +(2-(4-1)) Now Know at t=0 ; y los O é ° (Acaso + B Sino) +447-60-1) I CA +o) ++ (+1) 2 A = I (

Add a comment
Know the answer?
Add Answer to:
A spring-mass-dashpot system with m=1, k= 2 and c= 2 (in their respective units) hangs in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • ???? Suppose that the mass in a mass-spring-dashpot system with m = = kg, c= 1...

    ???? Suppose that the mass in a mass-spring-dashpot system with m = = kg, c= 1 N, and k = 50 N/m. The mass is set into motion with initial position (0) 1 and initial velocity x' = -5. Find the position of the mass, x(t) and graph the position function.

  • (1) Suppose that the mass in a mass-spring-dashpot system with m = 10, the damping constant...

    (1) Suppose that the mass in a mass-spring-dashpot system with m = 10, the damping constant c = 9 and the spring constant k = 2 is set in motion with x(0) = −1/2 and x′(0) = −1/4. (a)[5 pts] Find the position function x(t). (b)[5 pts] Determine whether the mass passes through its equilibrium position. Sketch the graph of x(t).

  • A spring-mass-dashpot system for the motion of a block of mass m kg is shown in...

    A spring-mass-dashpot system for the motion of a block of mass m kg is shown in Fig. II-2. The block is moved to the right of the equilibrium position and is released from rest (time t = 0) when its displacement, x = XO. Using the notations given in Fig. II-2,4 (1) Draw the free body diagram of the block - (2) Write the equation of motion of the block- If the initial displacement of the block to the right...

  • A spring-mass-dashpot system for the motion of a block of mass m kg is shown in...

    A spring-mass-dashpot system for the motion of a block of mass m kg is shown in Fig. II-2. The block is moved to the right of the equilibrium position and is released from rest (time t = 0) when its displacement, x = XO. Using the notations given in Fig. II-2,4 (1) Draw the free body diagram of the block - (2) Write the equation of motion of the block- If the initial displacement of the block to the right...

  • damped forced mass-spring system with m 2, and k 26, under the 2 Consider a influence...

    damped forced mass-spring system with m 2, and k 26, under the 2 Consider a influence of an external force F(t)= 82 cos (4t) 1, 7 = a) (8 points) Find the position u(t) of the mass at any time t, if u(0) 6 and u'(0) = 0. b) (4 points) Find the transient solution u(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time? We were unable to...

  • You have a mass-spring-dashpot system where m = 2kg, a spring with k = 12 N/m....

    You have a mass-spring-dashpot system where m = 2kg, a spring with k = 12 N/m. And the dashpot with c= 10kg/s. Draw the system as a free body diagram, sum the forces to get a differential equation, then solve the differential equation given that the mass is pulled 1 meter out of equilibrium and given no initial velocity. so x(0) = 1 and x'(0) = 0

  • 1. A 1 kg mass is attached to a spring of spring constant k = 4kg/82, The spring-mass system is a...

    Differntial Equations Forced Spring Motion 1. A 1 kg mass is attached to a spring of spring constant k = 4kg/82, The spring-mass system is attached to a machine that supplies an external driving force of f(t) = 4 cos(wt). The systern is started from equilibrium i.e. 2(0) = 0 and z'(0) = 0. There is no damping. (a) Find the position x(t) of the mass as a function of time (b) write your answer in the form r(t)-1 sin(6t)...

  • For the given values of m, c, k and f(t), assume the forced vibration in a spring-mass dashpot system is initially at eq...

    For the given values of m, c, k and f(t), assume the forced vibration in a spring-mass dashpot system is initially at equilibrum. For t>0, find the motion x(t) and identify the steady periodic and transient parts m=2, c=2, k=1, f(t)= 5cos(t)

  • Suppose that the mass in a mass-spring-dashpot system with mass m = 81, damping constant C=...

    Suppose that the mass in a mass-spring-dashpot system with mass m = 81, damping constant C= 108, and spring constant k = 232 is set in motion with c(0) = 23 and z'(0) = 38. (a) Find the position function X(t) in the form x(t) = cos (b) Find the psuedoperiod of the oscillations and the equations of the "envelope curves" shown in the figure below, which graphs the motion of the mass in the system described above. Psuedoperiod of...

  • A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is...

    A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of (27 cos 3t − 18 sin 3t) N, determine the steady state response. Express your answer in the form R cos(ωt − δ). (Let u(t) be the displacement...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT