Question

When an element is oriented such that it is subjected to maximum in-plane shear stress, the element is also subject to: Avera

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Question 42 -- when an element is oriented such that it is subjected to maximum in plane shear stress , the element is also subject to average normal stress.

Question 43-- On Mohr's circle,the sign convention is positive normal stress right , positive shear stress up.

Question 44-- The maximum and minimum normal stresses at a point are known as principal stresses.

Question 45 -- For principal stresses with the same sign ,the absolute maximum in plane shear stress is equal to  σ1.

Add a comment
Know the answer?
Add Answer to:
When an element is oriented such that it is subjected to maximum in-plane shear stress, the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Part A - Normal Stresses, Shear, and Angles The stress element shown in the figure below...

    Part A - Normal Stresses, Shear, and Angles The stress element shown in the figure below is subjected to the indicated stresses of magnitude 0,1 = 35 MPa, oyl = 57 MPa, and Tryl = 41 MPa Oy Txy Determine the principal normal stresses 01 and 02, the maximum in-plane shear stress Tmax,in-plane, and the angles at which they occur relative to the given stress element. Follow the sign convention. Suppose that when the element is oriented at an angle...

  • Consider a point in a structural member that is subjected to plane stress. Normal and shear...

    Consider a point in a structural member that is subjected to plane stress. Normal and shear stresse acting on horizontal and vertical planes at the point 8.4 MPa are shown in the figure 44.8 MPa a) Draw Mohr's circle for this state of stress b) Determine the principal stresses and the maximum in- plane shear stress acting at the point. Show these stresses in an appropriate sketch. c) 60.5 MPa

  • . Consider the element shown. Determine the state of stress with respect to an element oriented 2...

    . Consider the element shown. Determine the state of stress with respect to an element oriented 22.5° CCW with respect to the element shown. (b) Find the principal stresses. (c) Find the principal planes. (d) Find the maximum shear stresses. (e) Find the maximum shear-stress planes. (f Sketch all the above stresses on appropriately oriented 560 kPa 2100 kPa planes using a ray diagram. 300 kPa (g) Draw Mohr's circle for the element and indicate items (a) - (e) on...

  • Draw and use Mohr's circle to determine (a) the principal stresses and (b) the maximum in-plane shear stress and average normal stress

    Draw and use Mohr's circle to determine (a) the principal stresses and (b) the maximum in-plane shear stress and average normal stress. Specify the orientation of the element in each case.

  • Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the p...

    please help me solve this whole mechanical design problem thanks Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the principal stresses, s, (c) the maximum in plane shearing stress, Tmar and (d) its orientation, p. (e) the normal stress at the plane of maximum shear stress, (1) sketch of the rotated plane element for the principal stresses and the rotated plane element for maximum shear stress similar to figure 1, below...

  • Consider a point in a structural member that is subjected to plane stress. Normal and shear...

    Consider a point in a structural member that is subjected to plane stress. Normal and shear stress magnitudes acting on horizontal and vertical planes at the point are Sx = 45 MPa, Sy = 10 MPa, and Sxy = 36 MPa. (a) Determine the principal stresses ( σ p 1 > σ p 2 ) and the maximum in-plane shear stress τ max acting at the point. (b) Find the smallest rotation angle θ p (counterclockwise is positive, clockwise is...

  • 1. Given a plane element in a body is subjected to a normal tensile stress in the x-direction of 120 MPa, a normal stre...

    1. Given a plane element in a body is subjected to a normal tensile stress in the x-direction of 120 MPa, a normal stress in the y-direction of-75 MPa and shear stresses of 50 MPa, as shown. Determing a. What is the maximum principal stress? b. What is the minimum principal stress? 75 MPa What is the maximum shear stress? 50 MPa c. d. what is the angle to the principal plane, θ e. What is the angle to the...

  • Consider a point in a structural member that is subjected to plane stress. Normal and shear...

    Consider a point in a structural member that is subjected to plane stress. Normal and shear stress magnitudes acting on horizontal and vertical planes at the point are Sx = 95.3 MPa, Sy = 79.3 MPa, and Sxy = 41.0 MPa. (a) Determine the principal stresses and the maximum in-plane shear stress acting at the point. (b) On your paper show these stresses in an appropriate sketch (e.g., see Figure 12.15 or Figure 12.16). (c) Compute the absolute maximum shear...

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, o, and O2 and their corresponding principal angles, 0p1,0p2 and show all of these on your Mohr's circle construction and a properly oriented stress element c. Calculate the maximum shear stresses, ITmax and their corresponding angles of maximum...

  • Problem 6 (15 points) The state of plane stress at a point is shown on the...

    Problem 6 (15 points) The state of plane stress at a point is shown on the element in Figure 6. a. Using Mohr's circle, determine the principal stresses and the maximum in-plane shear stress and average normal stress. Specify the orientation of the element in each case. b. Represent the state of stress on an element oriented 30° counterclockwise from the position shown in Figure 6. 20 MPa 100 MPa 40 MPa Figure 6 (plot Mohr's circle on the next...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT