Question

Problem 1. (40) Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 12
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solutions from Steam table (super heated) at 1st stage forbine inlet Stage (1) - P,= 12 mea, Ti = 480c SE : 6.4186 IST hia 32Similadly :- (halimpa + şily- hall n h2= Impa has 762.527.962512777.1-762.33 h = 2701.715 kolag The heated State) (3 ); - PzSt=.5924 g KS kgk Sfg = 726348 Kilk gk hf = 113.84 KB/Kg hag = 2402.4 kJ/kg Sy = (SF).col + Hy ( 58g)..os 008 mea ме * 7.5902Vs = (f) .00100848 m kg 008 mpa For isentropic pump :- Reume exit state (69!. ho= hs + (We) isentropic hst Ys (dp) hst Vs (PG(3) Net work per unit steam flow). (utustine), + (Werline); - w sume (haha) + (hz - hu)-(ho-hs) - 13295.3 - 2701,7157+ (3349.(5) Heat loss per unit steam flow Scondenser is Chuths) (2375.77 - 173.84) a condensor 2201.93 kolkg mi (6) Thermal efficie

Add a comment
Know the answer?
Add Answer to:
Problem 1. (40) Water is the working fluid in an ideal Rankine cycle with reheat. Superheated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 12 MPa, 480 °C and the pressure at the exit of the second stage turbine is 8 kPa. Steam expands through the first stage turbine to 1 MPa and then is reheated to 440 °C. Saturated liquid water leaves the condenser. After the pump, pressure goes back to 12 MPa. Find: (1) Sketch the process on a T-s diagram and justify the location...

  • Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor...

    Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine at 10 MPa, 520°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 520°C. The pump and each turbine stage have an isentropic efficiency of 80%. Determine for the cycle: (a) the heat addition, in kJ per kg of steam entering the first-stage turbine. (b) the percent thermal efficiency....

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater....

    Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater. Superheated vapor enters the turbine at 12 MPa, 480°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine where some is extracted and diverted to a closed feedwater heater at 0.7 MPa. Condensate drains from the feedwater heater as saturated liquid at 0.7 MPa and is trapped into the condenser. The feedwater leaves the heater at 10 MPa and a...

  • Water is the working fluid in a modified Rankine cycle with superheat and reheat. Water as...

    Water is the working fluid in a modified Rankine cycle with superheat and reheat. Water as superheated vapor enters the high-pressure stage turbine at 60 bar and 440 C and leaves at 5 bar as liquid-vapor mixture with a quality of xa-0.98. It is then reheated to 400 °C at the same pressure of 5 bar before entering the second stage turbine where it expands to a pressure of 0.1 bar and a mixture quality of x0.96. The condenser pressure...

  • (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam...

    (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam exits the boiler at 4 MPa and 600°C with a mass flow rate of 8 kg/s. The steam leaves the turbine at a pressure of 100 kPa. (a) Sketch the cycle on a T-s diagram (6) Determine the power output of the turbine (c) Determine the rate of heat loss from the condenser (d) The required pump power (e) The rate of heat addition...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 Mpa, 560 C with a mass flow rate of 7.8kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 85%, and the isentropic pump efficiency is 85%. Cooling water enters the adiabatic condenser at 18 C and exits at 36 C with no significant change in pressure and assuming the specific heat of the cooling...

  • Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s...

    Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s entres the first-stage turbine at a pressure of 14 MPa Each turbine stage has an isentropic efficiency of 90%. The temperature of the inlet vapour is 520°C. The steam expands through the first-stage turbine to a pressure of 0.9MPa where some of the steam is...

  • Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam...

    Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam at the high-pressure turbine inlet is at 10 MPa and 700 K and it is saturated steam at the outlet The steam is reheated to 675 K before it enters the low pressure turbine. The pressure is reduced to where the steam is let down to 150 kPa The mass flow rate is 60 kg/s, 1. Draw the T-s diagram; [5 2. State all...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT