Question

​​​​​

  1. A mass is connected to a spring and moving on a frictionless surface as in the picture below:

t k m

Assume that the spring is massless and has a spring constant value of 300[N/m]. Assume that the mass is 3 [kg]. Assume that the spring starts at equilibrium (y=0) while moving to the right at speed v. Assume that it reaches a maximum displacement of 5 cm.

Write an expression for the velocity of the mass versus time. The only variables in the equation should be x and t.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Now displacement ng=yo Sin/wt) kim = 350 = 10 rad/s yo 5 cm = -oooo5 m 58103 0.005 sin (lot) О ve dy dt = +0005 cos (lot) 0.

Add a comment
Know the answer?
Add Answer to:
​​​​​ A mass is connected to a spring and moving on a frictionless surface as in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • * Amass of 2.0 kg is connected to a spring with a spring constant of 5.0...

    * Amass of 2.0 kg is connected to a spring with a spring constant of 5.0 N/m. The mass is oscillating on a horizontal, frictionless surface. At time t = 0, the mass is 0.30 m from the equilibrium position and has zero velocity. (a) What is the amplitude? (b) What is the maximum speed of the mass? (c) What is the maximum acceleration of the mass? (d) Write an equation that describes the displacement of the mass from the...

  • A spring of mass of 5 kg is resting on a frictionless horizontal surface and is...

    A spring of mass of 5 kg is resting on a frictionless horizontal surface and is pressed against a spring with a spring constant of 500 N/m, compressing the spring 25 cm and then released. Draw a picture, label the variables, and label applicable equations to answer the following: (a) How fast will the spring be going at x = + .25 m?; (b) how fast will the spring be going at x = 0 m?; (c) at what position...

  • show a solution please A 4.00 kg mass is connected to a spring with a spring...

    show a solution please A 4.00 kg mass is connected to a spring with a spring constant of 9.0 N/m. The displacement is given by the expression x(t)= 16.0 cm cos(omega t). Determine the angular frequency omega, the amplitude, the frequency, the period, the maximum velocity and the total energy of the mass moving of SHM (neglect the mass of the spring).

  • A mass m = 5 kg is connected to an ideal massless spring of spring constant...

    A mass m = 5 kg is connected to an ideal massless spring of spring constant k = 100 N/m. At initial time t = 0 s, the mass passes the equilibrium position moving to the left (defined as the negative x direction) with a velocity vx0 = -5 m/s. Part (a): What is the first time after the initial time that the mass will be at the rightmost displacement? What is the quickest approach to this problem?

  • A horizontal mass-spring system consists of a 2 kg mass moving on a frictionless surface attached...

    A horizontal mass-spring system consists of a 2 kg mass moving on a frictionless surface attached to a spring. The other end of the spring is attached to a wall. The mass is pulled and released. The resultant simple harmonic motion has a period of 5 s and it is observed that the maximum velocity of the mass is 0.3 m/s. a) Calculate the spring constant of the spring. (b) Calculate the amplitude of the motion. Sometime later, when the...

  • 1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface....

    1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. The spring constant is 280N/m. The block-spring system undergoes simple harmonic motion. At a time t=0s, the position of the block x= +A and its velocity vx= 0. At t=2.50s the position x = -12.0 cm No credit awarded without correct units! a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle d. Write the...

  • A 1.5 kg mass is placed on a frictionless surface and attached to a spring with...

    A 1.5 kg mass is placed on a frictionless surface and attached to a spring with a spring constant of 5.1 N/m. The spring is stretched and released, so that the amplitude of oscillation is 2.0 cm. What is the velocity of the mass when it is 0.010 m from its equilibrium point?

  • A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force...

    A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 300 N/m. The block is pulled from its equilibrium position at x = 0 m to a displacement x = + 0.090 m and released from rest t=0 The block then executes SHM along the x-axis horizontal. (a) What is the maximum acceleration and velocity?

  • A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...

    A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 53.7 ) and a maximum displacement from equilibrium of 0.200 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? | kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...

  • A mass M is connected to a spring with spring constant k on either side, on...

    A mass M is connected to a spring with spring constant k on either side, on a frictionless surface. The mass is initially held a distance X from equilibrium before it is released from rest and allowed to oscillate. If the maximum speed of the mass during oscillation is VmaxVmax=10.6msms, and the initial displacement X=3.7m, what is the period of oscillation? Answer in seconds.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT