Question

Problem-1: (20 points) A cantilever beam is supported by a distributed load, concentrated load and moment as shown in the fig
Problem. 3. (20 points) A crate. W of 35 kg weight is supported by three cables AB. AC. and AD. Determine the following a Wri
Problem-5: (20 points) Dutermine the force in members EF. FE, BC and BF of the truss and state if these memhers wurde in tens

engineering mechain
0 0
Add a comment Improve this question Transcribed image text
Answer #1

SED left upwards & Right loh ikalu ولا 내 Yy co / & Joken downerds (+) postre Couple not considered in SFD Sfat A = (right sidBM at A xol- of - ox (1/4 + 1/2] - WoT 4*{% + 2 ] = -10 - 10x 3/4 - Woxl% 11144/8 -- 10 - 10x 9 = -10- 90 - 88 - = -188 kNm N3 SED diagram at C=0 D = lotW (L.S) l Okw(R.) B- A- 10 IN CL-s) & 10kN (RS) la IN (L.s) & lokN (R.S. Itals Woj tokn - A Jioko# Shear force and Bending moment at 4 distance from wall A SA Wo llum 2 A B t Thy 44 3kN IX 12/4 = 1x 3 BM from 니 SFR from de

Add a comment
Know the answer?
Add Answer to:
engineering mechain Problem-1: (20 points) A cantilever beam is supported by a distributed load, concentrated load...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and...

    Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and a concentrated load, F, as shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected a) Draw the free body diagram for the beam, showing all the applied and reaction forces. Find the reaction forces F=14 kN .6m b) Give the expression for the shear force, V- V(x), and the bending moment M M(x),...

  • P=10 kN A cantilever beam is subiected to a concentrated force P, a uniformly distributed load...

    P=10 kN A cantilever beam is subiected to a concentrated force P, a uniformly distributed load w and a moment MI shown in the figure. Neglect the weight of the beam. (a) Draw the free body diagram for the beam showing all the 2 m reactions, replacing the support M.-2 kNm by the reaction forces/moments. (b) Use the equations of equilibrium to find the reaction forces/moments at R (c) Give the expression for the shear force, V- V(x), and the...

  • HW16.11. Cantilever beam with distributed load Consider a cantilever beam subjected to a uniform distributed load...

    HW16.11. Cantilever beam with distributed load Consider a cantilever beam subjected to a uniform distributed load as indicated below. ty L/4 L/2 Draw the free-body diagram and corresponding shear force and bending moment diagrams. To draw the shear force and bending moment diagrams, you MUST use the minimum number of lines (straight or curved), i.e., the minimum number of objects created by clicking the two buttons under "V and M lines" FBD FBD Concentrated forces: FBD Distributed loads: ttt ???

  • I need help with this problem. A cantilever beam is subjected to a linearly distributed load,...

    I need help with this problem. A cantilever beam is subjected to a linearly distributed load, with W, = 10 kN/m and to an inclined point load F equal to 20 kN, as shown in the figure. The length of the beam is L=10 m. Make a cut at distance x from the free end of the cantilever, as shown in the figure, and use the method of sections to derive expressions for the internal resultant loadings at the cross-section...

  • A hanging beam is pin-supported at  and  and is subject to a uniform distributed load with magnitude  from  to  and a...

    A hanging beam is pin-supported at  and  and is subject to a uniform distributed load with magnitude  from  to  and a moment with magnitude  at . The corresponding shear force diagram is illustrated below (drawn to scale). (a) Draw the bending moment diagram. A hanging beam is pin-supported at B and D and is subject to a uniform distributed load with magnitude w from A to B and a moment with magnitude Mc = wa’ at C. 2a The corresponding shear force diagram is illustrated below...

  • The W33 x221 steel simply supported beam is loaded with concentrated loads and uniform load as...

    The W33 x221 steel simply supported beam is loaded with concentrated loads and uniform load as shown with the load P= 150kip and w = 10kip/ft. For this beam do the following; a) Draw the shear and bending moment diagram b) Calculate the maximum compressive and tensile stress c) Calculate the maximum shear stress P Р 3 ft 3 ft w 10 ft

  • The cantilever beam shown is subjected to a moment at A and a distributed load that...

    The cantilever beam shown is subjected to a moment at A and a distributed load that acts over segment BC, and is fixed at C. Determine the reactions at the support located at C. Then write expressions for shear and bending moment as a function of their positions along the beam. Finally, use these expressions to construct shear and bending moment diagrams Draw a free-body diagram of the beam on paper. Use your free-body diagram to determine the reactions at...

  • Question 2: A simply supported beam under loading as shown in Figure 1: 1. Draw the influence lines of the bending moment and shear force at point C (L/4) Using the influence lines to determine t...

    Question 2: A simply supported beam under loading as shown in Figure 1: 1. Draw the influence lines of the bending moment and shear force at point C (L/4) Using the influence lines to determine the bending moment and shear force at section C due to the loading as shown in the figure. 2. 3. There is a distributed live load (w#2.5kN/m) which can vary the location along the beam. Determine the location of the live loads which create the...

  • The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed...

    The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed load over its entire 1.2m length. Specify the maximum allowable load if the beam is made from malleable iron, ASTM A220, class 80002. The allowable tensile stress is 164 MPa and allowable compressive stress is 412 MPa. The centroid of the section is located at 35 mm from the bottom and moment of inertia are Ix = 2.66 x 10 mm". (a) Draw loading...

  • The cantilever beam shown is subjected to a moment at A and a distributed load that...

    The cantilever beam shown is subjected to a moment at A and a distributed load that acts over segment BC, and is fixed at C. Determine the reactions at the support located at C. Then write expressions for shear and bending moment as a function of their positions along the beam. Finally, use these expressions to construct shear and bending moment diagrams. Part A - Reactions at support C Draw a free-body diagram of the beam on paper. Use your...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT