Question

(Influence Line Use) Problem 2. The INFLUENCE LINES ARE GIVEN for the beam below. DRAW THE PLACEMENT OF THE LOADS AND CALCULA
0 0
Add a comment Improve this question Transcribed image text
Answer #1

B 10 to al 1400 llo 1.25 I -0.25 ILD for Shear at B & load placement for shear at B -0.75 maxm + 1400 eb 1.5 am DL I LO for

Add a comment
Know the answer?
Add Answer to:
(Influence Line Use) Problem 2. The INFLUENCE LINES ARE GIVEN for the beam below. DRAW THE...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (Influence Line Use) Problem 2. The INFLUENCE LINES ARE GIVEN for the beam below. DRAW THE...

    (Influence Line Use) Problem 2. The INFLUENCE LINES ARE GIVEN for the beam below. DRAW THE PLACEMENT OF THE LOADS AND CALCULATE THE VALUES FOR THE MAXIMUM NEGATIVE SHEAR at "B", and MAXIMUM POSITIVE MOMENT at "B" due to a concentrated point load of 1400 lb, uniform live load of 800 lb/ft, and a uniform dead load of 600 lb/ft. (12 points) B с 10 ft 6 ft 2A 2 ft Vs ww 2.25 IL RA -0.25 1.25 0.25 IL...

  • Problem 2. The INFLUENCE LINES ARE GIVEN for the beam below. DRAW THE PLACEMENT OF THE...

    Problem 2. The INFLUENCE LINES ARE GIVEN for the beam below. DRAW THE PLACEMENT OF THE LOADS AND CALCULATE THE VALUES FOR THE MAXIMUM NEGATIVE SHEAR at "B", and MAXIMUM POSITIVE MOMENT at "B" due to a concentrated point load of 1400 lb, uniform live load of 800 lb/ft, and a uniform dead load of 600 lb/ft. (12 points) B с А 10 ft 6 24 2 ft Vs. 2.25 IL RA -0.25 1.25 0.25 IL VB -0.25 -0.75 1.5...

  • Up ompound beam is subjected to a uniform dead load of 200 lb/ft and a uniform...

    Up ompound beam is subjected to a uniform dead load of 200 lb/ft and a uniform live load of 150 lb/ft. ermine (a) the maximum negative moment these loads develop at A, and (b) the maximum positive Shear these loads develop at D. Assume B is a hinge. El = constant. S: Live loads may be placed on any segment on the beam to maximize a function. Also, take advantage of the influence lines. There is load no point A...

  • This is an influence line question, please use that to solve for the max negative moment...

    This is an influence line question, please use that to solve for the max negative moment and shear. Thank you! KAssignment 8 (Influence Lines, Values, 2 questions, 6 marks inc. 2 bonus marks) Problem 6.20 Part A The compound beam shown in (Figure 1) is subjected to a uniform dead load of 350 lb/ft and a single live load of 5 k. Assume C is a fixed support, B is a pin, and A is a roller Determine the negative...

  • Q.3 (15 pts) For the beam shown below draw the influence line for Rc, Rp. VB,...

    Q.3 (15 pts) For the beam shown below draw the influence line for Rc, Rp. VB, and Mg using either the equilibrium method or the Muller-Breslau principle. Use the influence line for MB to compute the absolute maximum and absolute minimum bending moment produced at B due to a uniformly distributed live load of 10 k/ft that may or may not be present anywhere on the beam. Use the influence line for Veto compute the absolute maximum shear force produced...

  • Consider the beam subjected to a concentrated load consisting of 2.25 kips of dead load and...

    Consider the beam subjected to a concentrated load consisting of 2.25 kips of dead load and 5.55 kips of live load at point B. Find maximum factored beam shear, moment, and deflection. Consider the beam and loading given below. The beam is subjected to a concentrated load consisting of 2.25 kips of dead load and 5.55 kips of live load at point B. Neglect beam weight. You may use any information from the AISC Manual, a) Draw the general shape...

  • Chapter 6- Influence Lines Draw the influence line for the shear and moment at C for...

    Chapter 6- Influence Lines Draw the influence line for the shear and moment at C for the beam shown below. The support at A is a roller and the support at B is a pin. The beam is subjected to a uniform load of 5 kip/ft over its entire length and a single 12 kip concentrated force. Deternmine the maximum values of Ve and Mc and the position of the applied concentrated force for each condition. Answer: VC: +0.5 at...

  • 1. (40 pts.) HingeHinge 6 m 6 m 6 m 6 m Consider the given continuous beam above and a) Use Müller Breslau Principle and draw the influence lines of the vertical support reaction at C, shear force...

    1. (40 pts.) HingeHinge 6 m 6 m 6 m 6 m Consider the given continuous beam above and a) Use Müller Breslau Principle and draw the influence lines of the vertical support reaction at C, shear force at B and moment at B. Calculate the ordinates at the points A, B, C, D, E, F and G. (30 pts.) e the maximum positive shear force at B considering the following loading below. Also show what will be the loading:...

  • Problem 5 (20 %) The beam below was loaded with uniform load of 3kip/ft. Using the...

    Problem 5 (20 %) The beam below was loaded with uniform load of 3kip/ft. Using the Muller-Breslau principle draw the influence lines for bending moment at critical points G and just right of B, considering a unit moving load. (G is located at the mid-span of AB). Calculate the maximum magnitude bending moment at B and at G if a) the uniform load of 3kip/ft is live and b) the uniform load of 3kip/ft is dead. NOTE: Dead loads are...

  • Please show work and write clearly. Thank you. 6-21. The compound beam is subjected to a...

    Please show work and write clearly. Thank you. 6-21. The compound beam is subjected to a uniform dead load of 200 lb/ft and a uniform live load of 150 lb/ft. Determine (a) the maximum negative moment these loads develop at A, and (b) the maximum positive shear at D Assume B is a pin and C is a roller. 5ft . Prob. 6-21

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT