Question

The motor weighs 20 lb and is supported on four springs where k = 25 lb/in for each spring. 3-lb weights are on the ends of t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Matlab Code: clear;clc; syms w; M = (20/386 0 0:0 3/386 0;0 0 3/386); K = (112 -6 -6;-6 6 0;-6 0 6); %natural frequencies e =please give some positive rating..i have less cf score..

Thank You So Much..

Add a comment
Know the answer?
Add Answer to:
The motor weighs 20 lb and is supported on four springs where k = 25 lb/in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The vector-matrix form of the system model is: (18 0 18000 72001 x f(t) or Mx...

    The vector-matrix form of the system model is: (18 0 18000 72001 x f(t) or Mx + Kx = f(t) 08.3. -7200 8000 | X, 3. (1) X= M = (18 0 08 K 18000 -7200 7200 8000 and f(t) = (1) 12(0)] [x₂(t) The system's eigenvalues, natural frequencies, and eigenvectors are: 1 2 = 400, 0, = 20 s', and v, 1.5 1.) = 1600, 0), = 40 s', and v, = -1.5 1 1 The inverse of modal...

  • A 50 lb motor is bolted to the middle of a 72-inch long plank, and x...

    A 50 lb motor is bolted to the middle of a 72-inch long plank, and x is the displacement of the motor from its equilibrium position. The plank may be modeled as a simply supported beam with EI 18 x 10 lb-in2. Use the inch-pound-second system of units to work this problem, and use g 386 in/sec2 a) Neglect the mass of the plank and find the system's undamped natural frequency of vibration (ansuwer: f 21.3 Hz) b) Suppose the...

  • The vector-matrix form of the system model is: (18 0 18000 72001 x f(t) or Mx...

    The vector-matrix form of the system model is: (18 0 18000 72001 x f(t) or Mx + Kx = f(t) 08.3. -7200 8000 | X, 3. (1) X= M = (18 0 08 K 18000 -7200 7200 8000 and f(t) = (1) 12(0)] [x₂(t) The system's eigenvalues, natural frequencies, and eigenvectors are: 1 2 = 400, 0, = 20 s', and v, 1.5 1.) = 1600, 0), = 40 s', and v, = -1.5 1 1 The inverse of modal...

  • Consider an undamped system where the vector-matrix form of the system model is: F(t) [8 olx...

    Consider an undamped system where the vector-matrix form of the system model is: F(t) [8 olx Mx + Kx = 0 18X, + 2000 -1800 x -1800 4500 I:1-[0] The system is initially at rest with x(0) = 0 and x,0)=0 when input F(t) = 84 sin15t is applied to the system. Use the modal decomposition method described in chapter 5 to find the system response. Some intermediate results (find these as part of your solution) are: The system's two...

  • Consider an undamped system where the vector-matrix form of the system model is: [F(t) [8 orë...

    Consider an undamped system where the vector-matrix form of the system model is: [F(t) [8 orë Mx + x = LO 183, 2000 -1800 x (-1800 45001 The system is initially at rest with X (0) = 0 and 2,0)=0 when input F(t) = 84 sin 15t is applied to the system. Use the modal decomposition method described in chapter 5 to find the system response. Some intermediate results (find these as part of your solution) are: The system's two...

  • 3. A body weighing 25 lb is suspended from a spring of constant k=160 lb/ft. The...

    3. A body weighing 25 lb is suspended from a spring of constant k=160 lb/ft. The system is shown in Figure 1. At time t=0, it has a downward velocity of 2 ft/sec as it passes through the position of static equilibrium. Determine: (a) the static spring deflection. (b) the natural frequency of the system in both rad/sec and cycles/sec. k = 160 lb/ft (c) the system period (d) the displacement x as a function of time, where x is...

  • 2. Short-answer questions on various topics (20 marks total) In each case, clearly explain the reasoning...

    2. Short-answer questions on various topics (20 marks total) In each case, clearly explain the reasoning behind your answer. a. (3 marks) A causal LTI system has an impulse response h[n], having an even component he[n] and an odd component ho[n]. The portion of he[n] for n > 0 is he[n] = 0.5(0.32)", n > 0. Determine the complete description of he[n], ho[n], and h[n]. b. (3 marks) A system has the transfer function z– 7z+6 H(2) = 22 -0.12...

  • Problem 1: Given the transfer function from input u(t) to output y(t), Y (s) U(s) = s 2 − 4s + 3 (s 2 + 6s + 8)(s 2 + 25...

    Problem 1: Given the transfer function from input u(t) to output y(t), Y (s) U(s) = s 2 − 4s + 3 (s 2 + 6s + 8)(s 2 + 25) (a) Develop a state space model for this transfer function, in the standard form x˙ = Ax + Bu y = Cx + Du (b) Suppose that zero input is applied, such that u = 0. Perform a modal analysis of the state response for this open-loop system. Your...

  • KKKM3473/KKKM3314/KKKM3344 The characteristic polynomial of a feedback control system is given by 5. where K>0. Dete...

    KKKM3473/KKKM3314/KKKM3344 The characteristic polynomial of a feedback control system is given by 5. where K>0. Determine the range of values of K for which the system is stable. (10 marks) The closed loop poles of a second order system are located at points -3.5+1.5t and 6. -3.5-1.51 on the complex plane. Calculate the damped natural frequency, ωd. (10 marks) 7. The Bode plots for a first order dynamic system is shown in Figure 3. Estimate the magnitude and phase when...

  • 2. Consider the system shown in the figure below, comprised of the same motor, steel beam,...

    2. Consider the system shown in the figure below, comprised of the same motor, steel beam, steel cable and crate All assumptions and properties are the same with one exception; the cable is no longer considered as rigid Cable properties: length = 4 m, diameter = 0.007 m, E = 207 GPa, Calculate the equivalent stiffness of the cable, in units of N/m. (See table 4.1.1 in your textbook) Draw an equivalent system diagram where the beam and cable each...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT