Question

For the reaction Fe3+ + SCN 1- FeSCN2+ 9.00 mL of 0.00800M Fe(NO3)3 were diluted to a volume of 450.0 ml, then... 4.00 mL ofHow many mL of 0.00200 M Fe(NO3)3 are required to prepared 12.50 mL total volume with a concentration of 5.00x10-5 M Fe+3?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
For the reaction Fe3+ + SCN 1- FeSCN2+ 9.00 mL of 0.00800M Fe(NO3)3 were diluted to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. You prepare a mixture to use to create a colorimetry calibration curve for FeSCN2+ by...

    1. You prepare a mixture to use to create a colorimetry calibration curve for FeSCN2+ by mixing these things in a 25.00 mL volumetric flask and then diluting to the volume of the flask with 0.3 M HNO3. 5.00 mL 0.00200 M NaSCN 10.00 mL 0.30 M Fe(NO3)3 What is the concentration of FeSCN2+ in this mixture? [Pay attention to the values to determine which reactant is being driven to completely react...] 2. You prepare a mixture to use to...

  • Determination of an Equilibrium Constant 1) If 20.0 mL of 0.00200 M Fe(No3)3 is diluted to...

    Determination of an Equilibrium Constant 1) If 20.0 mL of 0.00200 M Fe(No3)3 is diluted to 50.0 mL, what is the concentration of Fe^+3 in the diluted solution? 2) Write the equilibrium for the following reaction. Co^+2 +4SCN^-1 <--> Co(SCN)4 ^-2 3) How many mmoles of SCN^-1 ion are there in 3.0 mL of 0.00200 M KSCN?

  • 4.81 mL of 0.00200 M Fe(NO3)3, 2.85 mL of 0.00200 M KSCN and 2.34 mL of...

    4.81 mL of 0.00200 M Fe(NO3)3, 2.85 mL of 0.00200 M KSCN and 2.34 mL of distilled water were mixed. The resulting solution was allowed to attain equilibrium at 24 oC. The absorbance of the equilibrium solution was recorded, and the [FeSCN2+] was determined graphically to be 7.58 x 10-5 M. Part A: Calculate the number of moles of Fe3+ initially added to the solution. Part B: Calculate the number of moles of FeSCN2+ formed in the solution at equilibrium....

  • 1) Consider the following equilibrium: Fe3+(aq) + SCN-(aq) ⇌ FeSCN2+(aq) Initial concentrations: [Fe3+] = 0.590; [SCN-]...

    1) Consider the following equilibrium: Fe3+(aq) + SCN-(aq) ⇌ FeSCN2+(aq) Initial concentrations: [Fe3+] = 0.590; [SCN-] = 1.239; [FeSCN2+] = 0 The equilibrium concentration of [FeSCN2+]eq = 0.454 M. What is the numerical value of KC for this equilibrium? KC = __________________ 2) Consider the following equilibrium: Fe3+(aq) + SCN-(aq) ⇌ FeSCN2+(aq) Initial concentrations: [Fe3+] = 0.370; [SCN-] = 0.777; [FeSCN2+] = 0 The equilibrium concentration of [FeSCN2+]eq = 0.285 M. What is the equilibrium concentration of Fe3+? [Fe3+]eq =...

  • A 25.0 mL volume of 0.0200 M Fe(NO3)3 is mixed with 50.0 mL of 0.00200 M...

    A 25.0 mL volume of 0.0200 M Fe(NO3)3 is mixed with 50.0 mL of 0.00200 M NaSCN and 25.0 mL of 0.100 HNO3. The blood-red FeSCN2+ ion forms and the equilibrium is established: Fe3+(aq) + SCN-(aq) <---> FeSCN2+(aq) The equilibrium concentration of FeSCN2+ ([FeSCN2+]) was measured spectrophotometrically and found to be 7.0 x 10-4 mol/L. To calculate the equilibrium constant (Kc) for thr equilibrium system, proceed through the following steps: A. Moles of Fe3+, initial B. Moles of SCN-, initial...

  • What's the concentration of [FeSCN2+] using limiting reactant theory and equation? For each test tube solution...

    What's the concentration of [FeSCN2+] using limiting reactant theory and equation? For each test tube solution enter the initial concentration of Fe+ and SCNthe equilibrium concentration of FeSCN2: into the ICE table given. Complete entries for the rest of the table and calculate the K value for each of the tables. The values of K should be confined to a narrow range to reflect constancy. Comment on the quality of your work in this regard and calculate the average K....

  • Table A. Preparation of Standard solutions of FeSCN2+ 1.0 M HNO3 0.002 M 0.200 M Solution...

    Table A. Preparation of Standard solutions of FeSCN2+ 1.0 M HNO3 0.002 M 0.200 M Solution KSCN (mL) Fe(NO3)3 (mL) 0.5 5 [FeSCN2+] (mol/L)* 1 4.0x10^-5 Add 1.0 M 2 1.0 5 8.0x10^-5 HNO3 3 1.5 5 1.2x10^-10 4 2.0 5 1.6x10-4 to each to adjust the volume to 25 mL. 5 2.5 5 2.0x10-4 * Calculate the concentrations of FeSCN2+ in each beaker, assuming that all SCN-ions exist as FeSCN2+. In other words, [FeSCN2+] (in Soln 1) = [SCN-]...

  • Standard solutions of [Fe(SCN)2-] were prepared and their absorbance measured in order to study the Keq...

    Standard solutions of [Fe(SCN)2-] were prepared and their absorbance measured in order to study the Keq for the reaction       Fe3+ +      SCN-      <=>   FeNCS2+ A plot of absorbance verses concentration of [Fe(SCN)2-] is shown below. To determine the Keq for the above reaction, 10.00 mL of 0.00200 M Fe(NO3)3 solution is mixed with 5.00 mL of 0.0020 M KSCN and diluted with 5.0 mL 0f 0.10 M HNO3. The absorbance of this red solution is found to be 0.322....

  • A student mixes 5.00 mL 4.00 x 10-3 M Fe(NO3)3 with 5.00 mL 4.00 x 10-3 M KSCN.

    A student mixes 5.00 mL 4.00 x 10-3 M Fe(NO3)3 with 5.00 mL 4.00 x 10-3 M KSCN. The student finds that the equilibrium concentration of FeSCN2+ is 5.6 x 10-4M. a. Set up the Kc expression for the following equation. Fe3+ + SCN-  ↔ FeSCN2+b. What is the total volume of the solution? _______ mL c. Fill in the following table for the moles of each species.d. Find the concentration for the above ions. e. Calculate Kc for the reaction.

  • A student mixes 5.12 mL of 4.02 x 10 M Fe(NO3)3 with 4.88 mL 2.01 x...

    A student mixes 5.12 mL of 4.02 x 10 M Fe(NO3)3 with 4.88 mL 2.01 x 103 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN2 is 1.40 x 10 M. 1. What is the initial concentration in solution of the Fe3 and SCN'? What is the equilibrium constant for the reaction? What happened to the K' and the NO3 ions in this solution? a. b. C. A student mixes 5.12 mL of 4.02 x 10...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT