Question

A polytropic process for an ideal gas in one in which pressure and volume are related...

A polytropic process for an ideal gas in one in which pressure and volume are related by = const., where n is a constant. It is a generalization of the special processes considered earlier. Thus n = 0 defines an isobaric process, n = cp/cv an adiabatic process, n = 1 an isothermal process, and n = 8 an isochoric process. Suppose 1 kg of dry air at 280 K and 100 kPa undergoes a polytropic expansion in which the pressure falls to 70kPa and the potential temperature increases by 10 K. Solve for (a) the value of n; (b) the change in internal energy of the air; (c) the work done by the air; (d) the heat absorbed by the air.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a n23 C) WoSk done ab Sog De

Add a comment
Know the answer?
Add Answer to:
A polytropic process for an ideal gas in one in which pressure and volume are related...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A process in which temperature remains constant is, E a polytropic process. an impossible process. an...

    A process in which temperature remains constant is, E a polytropic process. an impossible process. an adiabatic process. an isochoric process. an isothermal process. The property Cp can only be used for constant-pressure processes. True False What would a quick estimate be on the change in specific internal energy (kJ/kg) of oxygen as ideal gas, when its temperature increases from 410K to 625K?

  • Consider that conditions are equal in a polytrophic process graph. If the graph indicates Argon, draw a graph that shows the same pressure (isobaric) and same volume and so on of water vapor. Turn in...

    Consider that conditions are equal in a polytrophic process graph. If the graph indicates Argon, draw a graph that shows the same pressure (isobaric) and same volume and so on of water vapor. Turn in a graph The processes described in this section correspond to the four paths4 shown on Fig. 3.6 for specific values of δ: . Isobaric process: By Eq. (3.35a), 80 Isothermal process: By Eq. (3.35b). 81 . Adiabatic process: . Isochoric process: By Eq. (3.35a), dV/dP...

  • A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an...

    A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an initial pressure of P = 360 kPa and temperature T = 275 K. The gas undergoes an isobaric expansion to V2 = 0.55 m3 and then an isovolumetric heating to P2 = 680 kPa. a) Calculate the number of moles, n, contained in this ideal gas. b) Calculate the temperature of the gas, in kelvins, after it undergoes the isobaric expansion. c) Calculate the...

  • Dmole of an ideal gas follows the cycle shown in the figure. 1-2 is isochoric process,...

    Dmole of an ideal gas follows the cycle shown in the figure. 1-2 is isochoric process, 2-3 is adiabatic process and 3-1 is isobaric process. Vi, Pi are given; V2-2V, P2- P/3. Determine (according to P1, V1) a) Adiabatic coefficient y and molar specific heats Cv and Cp (from the process 2-3) ? b) The heats from 1-2 and 3-1 processes? c) The thermal efficiency of the engine operating with this cycle. PI P2 V2 VI .. Dmole of an...

  • Air goes through a polytropic process in a piston/cylinder setup. The polytropic index is n. The...

    Air goes through a polytropic process in a piston/cylinder setup. The polytropic index is n. The process starts at P1 kPa, T1 oC, and ends with a pressure of P2 kPa. Answer Questions 6-8 about this process, considering the given information in Question 6. Assume air to be an ideal gas. Let, n=1.5 P1=2.3 MPa T1= 8.9 ×102 °C P2=2.1 ×102 kPa Cp = 1.004 kJ/kg-K, Cv = 0.717 kJ/kg-K, R = 0.287 kJ/kg-K Find the final temperature, in oC...

  • Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume...

    Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume relation is p. V..2=constant. The initial volume is 0.5 m², the initial temperature is 500 K and initial pressure is 600 kPa. The final pressure is 300 kPa. Determine (a) the mass of air, in kg (b) the boundary work, in kJ (c) the final temperature in K and (d) the heat transfer, in kJ.

  • 12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed...

    12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed by isobaric compression, p = cst.if P1 = 4.4atm, p2 = 1.7atm → ?- m calculate the work done by gas during the expansion. Express work in J = N·m! • For isothermal processes, AT = 0 T = cst → w=faw=fr&v=/MRT AV 594 Show your work like: `x-int_0^5 v(t)dt rarr x-int_0^5(-4*t)dt=-50 m 13. 1 mole of an ideal gas undergoes an isothermal expansion...

  • A, B , D ,E PLEASE SOLVE THEM ( DETAILED SOLUTION + CLEAR HANDWRITING) In this...

    A, B , D ,E PLEASE SOLVE THEM ( DETAILED SOLUTION + CLEAR HANDWRITING) In this question, assume no changes in Ek or Ep (a) In one cycle of a heat engine: 70 J are input by working, 90 J are output by working, 100 J are input by heating, 80 J are output by heating. Write down which one of the following is true: (A) |Wnet-160 J (B) Iw.et-20 J (C) η-0.25 (b) For a fixed amount of gas,...

  • (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at...

    (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at pressure Po and temperature T . The following questions refer to the work done on the gas, W- -PA 17% Part (a) The gas undergoes an isochoric cooling from its initial state (I-Po-T0). For this process, choose what happens to the energy heat, and work from the following Grade Summary Deductions Potential 100% 0% Submissions OAU > 0, Δυ-o-w. Q < 0, and w...

  • Er<E EF E E> E) W>0) and Polytropic PathsSpcl Cases for Ideal Gas n 0 constant...

    Er<E EF E E> E) W>0) and Polytropic PathsSpcl Cases for Ideal Gas n 0 constant pressure n 1 constant temperature n k constant entropy, adiabatic (q 0) n constant volume and W<0 W 0 For air R 0.287 kJ/kg-K and k Cp/Cv 1.4 if pi 300 kPa, v, 0.861 m3/kg then T, 900 K For T Ta if pa /p 3 then va = m2/kg pv RT and (T, n/(n-1) p2 V1 For vi v if po /p1 3...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT