Question

CHEN 4392 SPRING 2019 Homework # 3 Due Date: March 28, 2019 1. Each of the following systems is feedback controlled with a pr
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 tte)とc 61 based on A c Oren lust G + Ke

Add a comment
Know the answer?
Add Answer to:
CHEN 4392 SPRING 2019 Homework # 3 Due Date: March 28, 2019 1. Each of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block...

    Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block diagram. G(s) is the open-loop transfer function, and the controller is a gain, K. 1. (20) Calculate the open-loop transfer function tar →Q--t G(s) (10) Calculate the steady-state error to a step input of the open-loop system. 7. (in Bode Form) from the Bode plot. (10) Calculate the shortest possible settling time with a percentage overshoot of 5% or less. 8. 2. (10)Plot the...

  • I have no more posting for this month, please solve these for me thanks 1. Given...

    I have no more posting for this month, please solve these for me thanks 1. Given the following unity feedback system where s+z s2 (s + 10) and the controller is a proportional controller Ge = K, do the following: a. If z = 2, find K so that the damped frequency of the oscillation of the transient response is 5 rad/s. b. The system is to be redesigned by changing the values of z and K. If the new...

  • 1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design...

    1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design a lead compensator for the closed-loop (CL) system whose open loop transfer function is given below. Design objectives: reduce the time constant by 50% while maintaining the same value of the damping ratio for the dominant poles. Please note that H(s)-1. Please use the method based on root locus plot. G(s) 2 [s(s+2)] Please include detailed step Obtain the location of the desired dominant...

  • 5. A milling machine has the following open-loop transfer function: (s 1)(s+3) Draw a block diagram describing a negati...

    5. A milling machine has the following open-loop transfer function: (s 1)(s+3) Draw a block diagram describing a negative feedback system that includes a plant a) with transfer function of Gi(s) and a cascade proportional controller with a gain of K. b) Write the closed-loop transfer function for such a negative feedback system c The plant has poles that are solutions to P(s) 0 and zeros that are the solutions to Z(s)-0. Write an equation involving K, P(s) and Z(s)...

  • ELE480/580: Control Systems II Homework #6 Due: 4/29/2019 1. Consider a state equation with 0 0-2...

    please answer all ELE480/580: Control Systems II Homework #6 Due: 4/29/2019 1. Consider a state equation with 0 0-2 B 1C [0 0 1] A1 0 1 0 1 -3 0 Find the observer gain matrix L that places all three observer eigenvalues at -5. Write the state equation that defines the observer 2. For the state equation defined by the following state matrices x(t) 1 01x,(t)[1 h(t) | = | 0 0 111X2(t) | + | | | u(t)...

  • PROBLEM 4 Suppose that a system is shown in Figure 4. There are three controllers that might be incorporated into this system. 1. Ge (s)-K (proportional (P) controller) 2. GS)K/s (integral (I) contro...

    PROBLEM 4 Suppose that a system is shown in Figure 4. There are three controllers that might be incorporated into this system. 1. Ge (s)-K (proportional (P) controller) 2. GS)K/s (integral (I) controller) 3. G (s)K(1+1/s) (proportional, integral (PI) controller) The system requirements are T, < 10 seconds and P0 10% for a unit step response. (a) For the (P) controller, write a piece of MATLAB code to plot root locus for 0<K<,and find the K value so that the...

  • Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2...

    Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2 Consider the system shown in the above figure, where G(s) = s(8+1128+1) a) Draw a Bode diagram of the open-loop transfer function G(s) when K=1. b) On your plot, indicate the crossover frequencies, PM, and GM. Is the closed-loop system stable with K=1? c) Determine the range of K for which the closed-loop systems will be stable. d) Verify your answer in (c) using...

  • EEL 4652 Control Systems 1 (Fall 2018) Homework 4 Nyquist Stability Criterion + Frequency Domain Design...

    EEL 4652 Control Systems 1 (Fall 2018) Homework 4 Nyquist Stability Criterion + Frequency Domain Design Problem 1: Nyquist Plots and Closed-Loop Stability A unity feedback closed-loop system has a forward transfer function of KG(s). Sketch the Nyquist plot for each of the G(s) cases listed below, and then find if the closed loop system is stable and if not - how many RHP closed loop poles there are. Find it for all the relevant ranges of K for -o0SKo,...

  • 3. Consider the following mass-spring-damper system. Let m= 1 kg, b = 10 Ns/m, and k...

    3. Consider the following mass-spring-damper system. Let m= 1 kg, b = 10 Ns/m, and k = 20 N/m. b m F k a) Derive the open-loop transfer function X(S) F(s) Plot the step response using matlab. b) Derive the closed-loop transfer function with P-controller with Kp = 300. Plot the step response using matlab. c) Derive the closed-loop transfer function with PD-controller with Ky and Ka = 10. Plot the step response using matlab. d) Derive the closed-loop transfer...

  • It has to be answered using matlab and other programs as each section says

    The open-loop system dynamics model for the NASA eight-axis Advanced Research Manipulator II (ARM II) electromechanical shoulder joint/link, actuated by an armature-controlled dc servomotor is shown in Figure P1.The ARM II shoulder joint constant parameters areKa= 12, L=0.006 H, R= 1.4 Ω, Kb= 0.00867, n=200, Km= 4.375, J=Jm+ JL /n2, D=Dm+DL /n2, JL= 1, DL= 0.5, Jm= 0.00844, and Dm= 0.00013.FIGURE P1 Open-loop model for ARM ll(Due to 29/8/2020)a. Obtain the equivalent open-loop transfer function, ?(?) (with a unity feedback...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT