Question

For a unity feedback system as shown in Fig. 1, where 10(92 - 2s+2) G(8) = (5+1)(+ 2s +1) the Nyquist plot is shown in Figure

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
For a unity feedback system as shown in Fig. 1, where 10(92 - 2s+2) G(8) =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b)....

    b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b). Nyqulst Diagram x 10 1.5 1- System: N Real: -9.08e-005 0.5- Imag: -5.62e-006 Frequency (rad/sec): -104 -0.5 -15 -1.5 0.5 0.5 1.5 1 2.5 3.5 Real Axis x 10 Figure Q5(b) K If the transfer function of the system is given as G(s) (s+10)(s+50)(s+150) determine the following: The closed loop stability of the system using Nyquist Stability Criterion. i) ii) Gain margin and phase...

  • Problem 2: For a unity feedback system where the plant is defined as G(s) K s(s+3)(s...

    Problem 2: For a unity feedback system where the plant is defined as G(s) K s(s+3)(s +5) a. Sketch the Nyquist Counter path and Nyquist diagram. Clearly show the real and imag- inary axis intercept points and the low and high frequency asymptotes. (10 pts) b. Using the Nyquist criterion, obtain the range of K in which the system can be stable, unstable, and also find the value of gain K for marginal stability. (7 pts) c. Calculate the frequency...

  • The Nyquist plot of a plant P in a unity feedback system is shown below. It is know that P has on...

    The Nyquist plot of a plant P in a unity feedback system is shown below. It is know that P has one pole with a non-negative real part. 6.13 The Nyquist plot of a plant P in a unity feedback system is shown below. It is known that P has one pole with non-negative real part 1. What is the number of poles of P with zero real part? 2. What is the number of unstable poles of P? 3....

  • (i)Apply the Nyquist criterion to find the gain Kp at which the closed loop system becomes...

    (i)Apply the Nyquist criterion to find the gain Kp at which the closed loop system becomes marginally stable and the practical range of safe operating gains for the proportional controller. (ii) Find the gain margin of the system when the operating gain of the controller Kp = 2. Use Fig. 2 to read the required values off the plot. Proportional Controller Process R(S) Y() Figure 1: Unity Feedback Systems Consider again the system in Fig. 1. The plant transfer function...

  • 1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controll...

    1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controller Sketch (by hand) and fully label a Nyquist plot with K-1 for each of the plants listed below.Show all your work. Use the Nyquist plot to determine all values of K for which the closed-loop system is stable. Check your answers using the Routh-Hurwitz Stability Test. [15 marks] (a) P(s)-2 (b) P(s)-1s3 (c) P(s) -4-8 s+2 (s-2) (s+10) 1. Consider the usual unity-feedback closed-loop control system with a...

  • 2. Given a unity feedback system with open-loop transfer function s+40s-I) a) For K-1, derive the...

    2. Given a unity feedback system with open-loop transfer function s+40s-I) a) For K-1, derive the expressions for the real and imaginary parts of G(jo). b) What happen to the real and imaginary parts of G(jo) for ω 0 and for Are there values of ω that either the real or imaginary part goes to zero? If not, compute Gijo) for some ovalue, say,, or 2, to help you sketch the Polar plot of Gja). c) d) Use Matlab to...

  • Exercise 1: Plot the Nyquist diagram of 10 G(s) = $? + 2s + 2 and...

    Exercise 1: Plot the Nyquist diagram of 10 G(s) = $? + 2s + 2 and deduce the stability of the unity feedback system with the open-loop TF equal to G. Find the stability margins. Compute analytically gain and phase margins. Plot the Bode asymptotic diagram. How can we estimate the values for gain and phase margins graphi- cally?

  • Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sk...

    Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sketch the root locus. 1. Draw the finite open-loop poles and zeros. ii. Draw the real-axis root locus iii. Draw the asymptotes and root locus branches. (b) Find the value of gain that will make the system marginally stable. (c) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at s...

  • For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sket...

    For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sketch the bode plot with Matlab command bode0 b) Plot the nyquist diagram using Matlab command nyquist(0, find the system stability c) Find phase margin, gain margin, and crossover frequencies using Matlab command margin(0 and find the system stability For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sketch...

  • 2. A unity feedback system has the following open-loop transfer function -0.5s + 0.5 G(s)i a)...

    2. A unity feedback system has the following open-loop transfer function -0.5s + 0.5 G(s)i a) Obtain the Nyquist plot and analyze the stability of the closed loop system b) Compute the stability margins from the Nyquist plot.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT