Question

A 0.500 kg cart (A) with a velocity of +2.00 m/s collides with a 1.50 kg...

A 0.500 kg cart (A) with a velocity of +2.00 m/s collides with a 1.50 kg cart (B) moving with a velocity of -1.00 m/s on a low-friction track. After the collision, cart A is moving at -1.50 m/s.

a. What is the final velocity of cart B?

b. Draw a velocity vs. time plot (by hand) for the interaction. Draw both carts’ velocities on the same plot, and label your axes with an appropriate scale. The time of the interaction does not need to be accurate.

0 0
Add a comment Improve this question Transcribed image text
Answer #1


From aw 2 m hm AP my ouriv

Add a comment
Know the answer?
Add Answer to:
A 0.500 kg cart (A) with a velocity of +2.00 m/s collides with a 1.50 kg...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A cart of mass 0.20 kg starts moving at velocity 3.0 m/s collides inelastically with an...

    A cart of mass 0.20 kg starts moving at velocity 3.0 m/s collides inelastically with an initially stationary cart of mass 0.40 kg. (A) If the carts stick together, what is their combined velocity immediately after the collision? (B) How much kinetic energy is lost in the collision?

  • A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has...

    A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has an initial x component of velocity of +0.40 m/s, and cart A is initially at rest. After the collision the x component of velocity of the standard cart is +0.20 m/s and the x component of velocity of cart A is +0.65 m/s . After the collision, cart A continues to the end of the track and rebounds with its speed unchanged. Before the...

  • A small, 150 g cart is moving at 1.50 m/s on a frictionless track when it...

    A small, 150 g cart is moving at 1.50 m/s on a frictionless track when it collides with a larger, 2.00 kg cart at rest. After the collision, the small cart recoils at 0.890 m/s . Part A What is the speed of the large cart after the collision?

  • In a physics lab, a 0.500-kg cart (Cart A) moving with a speed of 130 m/s...

    In a physics lab, a 0.500-kg cart (Cart A) moving with a speed of 130 m/s encounters a magnetic collision with a 1.50-kg cart (Cart B) which is initially at rest. The 0.500-kg cart rebounds with a speed of 50 m/s in the opposite direction. Determine the post-collision speed of the 1.50-kg cart.

  • If a 0.25 kg cart moving to the right with a velocity of +0.31 m/s collides...

    If a 0.25 kg cart moving to the right with a velocity of +0.31 m/s collides inelastically with a 0.5 kg cart traveling to the left with a velocity of -0.22 m/s, what is the total momentum of the system before the collision?

  • do all please. 1. A 20 Kg cart moving at 10 m/s collides with a 10...

    do all please. 1. A 20 Kg cart moving at 10 m/s collides with a 10 Kg cart moving at 20 m/ s. The two carts stick to each other after the collision. Calculate the final speed of the carts just after the collision if () They were moving in the same direction direction (i.e. thefaster bumped the slower from behind) (ii) They were moving at 90° respect to each other. (ii) They were moving at 30° respect to each...

  • A cart on a table (cart A) collides with another cart that is initially at rest...

    A cart on a table (cart A) collides with another cart that is initially at rest (cart B). After the collision, both carts are moving. The diagrams below represent snapshots of the carts before and after the collision. The arrows on the diagrams indicate the velocity vectors of the carts at the instants shown. (The vectors are drawn to scale.) Consider the time interval between the two instants shown. During this time interval, is the magnitude of the average acceleration...

  • A 5.0-kg carl (cart 1) rolling cast on a level, frictionless track at 18.0 m/s, collides...

    A 5.0-kg carl (cart 1) rolling cast on a level, frictionless track at 18.0 m/s, collides with a stationary 4.0-kg cart (cart 2). After the collision, cart 1 is still rolling cast, but now at a speed of 2.0 m/s. (a) Assuming the total momentum of the two-cart system is conserved, calculate the final velocity of the second cart. (b) Before the collision, the system's total kinetic energy was 810 J. Calculate the total kinetic energy of the two-cart system...

  • if an inelastic collision of two carts on a frictionless track collides, what is the momentum...

    if an inelastic collision of two carts on a frictionless track collides, what is the momentum of cart A and B, before and after the collision? cart A has a mass of .5025 kg and cart B has a mass of .5491 kg. carts A initial velocity is .5595 m/s then collides and sticks to cart B, which was initially at rest, with a final velocity of .1622 m/s.

  • Problem 4 In a lab experiment, a cart of mass 2 kg, moving initially to the...

    Problem 4 In a lab experiment, a cart of mass 2 kg, moving initially to the right at 3 m/s, collides head-on with a cart of unknown mass, moving initially to the left at 2 m/s. As a result of the collision, the carts bounce back with exactly the opposite velocity of what they had going in. Assume the system is effectively isolated (a)What is the mass of the second cart? (b)What is the total momentum of the system? (c)What...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT