Question

A sheet of steel 2.2 mm thick has nitrogen atmospheres on both sides at 1200°C and...

A sheet of steel 2.2 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 6.8 × 10-11 m2/s, and the diffusion flux is found to be 2.5 × 10-7 kg/m2-s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 5.1 kg/m3. How far into the sheet from this high-pressure side will the concentration be 1.1 kg/m3? Assume a linear concentration profile.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

O b DG.xlo-11 m2/S 2.5% 10-7 1.088 x 10-3 m

Add a comment
Know the answer?
Add Answer to:
A sheet of steel 2.2 mm thick has nitrogen atmospheres on both sides at 1200°C and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sheet of steel 3.8 mm thick has nitrogen atmospheres on both sides at 1200°C and...

    A sheet of steel 3.8 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 5.1 × 10-11 m2/s, and the diffusion flux is found to be 4.8 × 10-7 kg/m2-s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 4.7 kg/m3. How far into the sheet from this high-pressure side will...

  • A sheet of steel 1.7 mm thick has nitrogen atmospheres on both sides at 1200°C and...

    A sheet of steel 1.7 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 6.8 x 10-11 m/s, and the diffusion flux is found to be 1.4 x 10 kg/m2-s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 5.5 kg/m. How far into the sheet from this high-pressure side will...

  • Problem 5.09 A sheet of steel 3.6 mm thick has nitrogen atmospheres on both sides at...

    Problem 5.09 A sheet of steel 3.6 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 6.9 x 10-11 m2/s, and the diffusion flux is found to be 3.9 x 10 kg/m2-s Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 4.7 kg/m3. How far into the sheet from this high...

  • 9. (4 Marks) A sheet of steel 3 mm thick has nitrogen atmospheres on both sides...

    9. (4 Marks) A sheet of steel 3 mm thick has nitrogen atmospheres on both sides at 900°C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 1.85 x 10-10 m2/s, and the diffusion flux is found to be 1.0 x 10-7 kg/m2.s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 2 kg/m3. How far into the sheet from this...

  • 5.09 Problem 5.09 A sheet of steel 1.5 mm thick has nitrogen atmospheres on both sides...

    5.09 Problem 5.09 A sheet of steel 1.5 mm thick has nitrogen atmospheres on both sides at 12 OC and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 5.5 × 10-11 m2/s and the diffusion flux s found to be 4.)× 10 7 kg/m2-s Also, t is known that the concentration of nit ogen in the steel at the high pressure surface s 60 kg m3 Ho far into...

  • Current Attempt in Progress Support A sheet of steel 3.7 mm thick has nitrogen atmospheres on...

    Current Attempt in Progress Support A sheet of steel 3.7 mm thick has nitrogen atmospheres on both sides at 1200 C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 6.5x 1011 ms. and the diffusion flux is found to be 34x 10 kg/m2-s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 5.8 kg/m. How far into the sheet from...

  • Nitrogen is sometimes diffused into the surface of a steel component in a process called case...

    Nitrogen is sometimes diffused into the surface of a steel component in a process called case hardening. Consider a sheet of steel (1.416x10A0) mm thick which has nitrogen atmospheres on both sides at a temperature of 1200°C. The system is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is (6.735x10A-11) m2/s. The diffusion flux is found to be (2.52x10A-7) kg/m2-s. It is also known that the concentration of nitrogen at the...

  • A differential nitrogen pressure exists across a 2-mm-thick steel furnace wall. After some time, steady-state diffusion...

    A differential nitrogen pressure exists across a 2-mm-thick steel furnace wall. After some time, steady-state diffusion of the nitrogen is established across the wall. Given that the nitrogen concentration on the high-pressure surface of the wall is 5 kg/m3kg/m3 and on the low-pressure surface is 0.3 kg/m3 , calculate the flow of nitrogen through the wall (in kg/m2.h) if the diffusion coefficient for nitrogen in this steel is 1.0 ×10−10m2/s at the furnace operating temperature. Express your answer to three...

  • Please show work for problems 1-4 1. Calculate the activation energy for vacancy formation in aluminum,...

    Please show work for problems 1-4 1. Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500°C (773 K) is 7.57 x10m3. The atomic weight and density (at 500°c) for aluminum are 26.98 g/mol and 2.62 g/cm, respectively 2. What point defects are possible for Al,0, as an impurity in Mgo? How many Al ions must be added to form each of these defects? 3. A sheet of steel 4.5 mm thick...

  • The purification of hydrogen gas is possible by diffusion through a thin palladium sheet. Calculate the...

    The purification of hydrogen gas is possible by diffusion through a thin palladium sheet. Calculate the number of kilograms of hydrogen that pass per hour through a 1.6-mm-thick sheet of palladium having an area of 0.45 m2 at 500°C. Assume a diffusion coefficient of 1.9 × 10-8 m2/s, that the concentrations at the high- and low-pressure sides of the plates are 4.3 and 0.60 kg/m3 of hydrogen per cubic meter of palladium, and that steady-state conditions have been attained.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT