Question

I need help answering this question please read the question because i got it wrong twice. It says to calculate the E.Q. MOLARITY of CL2. **round the answer two decimal places**

Suppose a 250. mL flask is filled with 0.50 mol of CHCl, 1.5 mol of HCI and 1.7 mol of CCI4. The following reaction becomes possible Cl 2 (g) + CHCl 3 (g) 근 HCI (g) + CCl 4(g) The equilibrium constant K for this reaction is 0.610 at the temperature of the flask. Calculate the equilibrium molarity ofC2. Round your answer to two decimal places

0 0
Add a comment Improve this question Transcribed image text
Answer #1

   Cl2(g)    + CHCl3(g) ------------> HCl (g) + CCl4(g)

I                            0.5                             1.5               1.7

C           +x           +x                                -x                  -x

E            +x            0.5+x                         1.5-x            1.7-x

   [Cl2]   = x/0.25

[CHCl3] = 0.5+x/0.25

[HCl]   = 1.5-x/0.25

[CCl4]    = 1.7-x/0.25

        Kc   = (1.5-x)(1.7-x)/x*(0.5+x)

        0.61 = (1.5-x)(1.7-x)/x*(0.5+x)

     0.61*x*(0.5+x)   = (1.5-x)(1.7-x)

         x   = 0.79

      [Cl2]   = x/0.25   = 0.79/0.25   = 3.16M

    

Add a comment
Know the answer?
Add Answer to:
I need help answering this question please read the question because i got it wrong twice....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose a 250. mL flask is filled with 2.0 mol of Cl, 0.20 mol of CHCl,...

    Suppose a 250. mL flask is filled with 2.0 mol of Cl, 0.20 mol of CHCl, and 1.7 mol of CCI4. The following reaction becomes possible: Cl2(g) + CHCI, (8) HCI(g) +CCI (8) The equilibrium constant K for this reaction is 0.701 at the temperature of the flask. Calculate the equilibrium molarity of HCl. Round your answer to two decimal places. OM 1 x s ?

  • Suppose a 500. mL flask is filled with 1.9 mol of Cl2, 0.70 mol of HCl...

    Suppose a 500. mL flask is filled with 1.9 mol of Cl2, 0.70 mol of HCl and 1.7 mol of CCI4. The following reaction becomes possible Cl2(g)+ CHCI3)HCI (g)+CCI4g) The equilibrium constant K for this reaction is 7.09 at the temperature of the flask. Calculate the equilibrium molarity of HCl. Round your answer to two decimal places

  • Suppose a 250. mL flask is filled with 1.2 mol of Cl₂

    Suppose a 250. mL flask is filled with 1.2 mol of Cl₂, 1.8 mol of CHCl₃ and 0.90 mol of HCl. The following reaction becomes possible:Cl₂(g)+CHCl₃(g) ⇌ HCl(g)+CCl₄(g)The equilibrium constant K for this reaction is 0.855 at the temperature of the flask.Calculate the equilibrium molarity of HCl. Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 1.0 mol of CHCl, 1.6 mol of Hcl...

    Suppose a 500. mL flask is filled with 1.0 mol of CHCl, 1.6 mol of Hcl and 0.30 mol of CCI,. The following reaction becomes p Cl(g)+CHCI (g) HCI (s)+CC () The equilibrium constant K for this reaction is 0.671 at the temperature of the flask. Calculate the equilibrium molarity of Cl,. Round your answer to two decimal places. ?

  • Suppose a 250. ml flask is filled with 1.6 mol of Cl, and 1.3 mol of...

    Suppose a 250. ml flask is filled with 1.6 mol of Cl, and 1.3 mol of HCI. The following reaction becomes possible: H2(g) + Cl2(g) → 2HCI (g) The equilibrium constant K for this reaction is 0.967 at the temperature of the flask. Calculate the equilibrium molarity of C1. Round your answer to two decimal places. OM I ?

  • Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of...

    Suppose a 250. ml flask is filled with 1.7 mol of H, and 0.30 mol of Cly. The following reaction becomes possible: H2(g) + Cl2(g) - 2HCI(g) The equilibrium constant K for this reaction is 6.15 at the temperature of the flask. Calculate the equilibrium molarity of Cl2. Round your answer to two decimal places. OM xo?

  • Suppose a 250. mL flask is filled with 0.10 mol of Cl2 and 1.4 mol of...

    Suppose a 250. mL flask is filled with 0.10 mol of Cl2 and 1.4 mol of HCl. The following reaction becomes possible: H2(g)+Cl2(g)=2HCl(g) The equilibrium constant for this reaction is 0.414 at the temperature of the flask. Calculate the equilibrium molarity of . Round your answer to two decimal places.

  • Suppose a 500. mL flask is filled with 1.3 mol of H2 and 0.10 mol of...

    Suppose a 500. mL flask is filled with 1.3 mol of H2 and 0.10 mol of HC1. The following reaction becomes possible: H2(g) + Cl2(g)-2HCl (g) The equilibrium constant K for this reaction is 3.03 at the temperature of the flask. Calculate the equilibrium molarity of H2. Round your answer to two decimal places.

  • Suppose a 500. ml flask is filled with 1.2 mol of Cl, and 0.80 mol of...

    Suppose a 500. ml flask is filled with 1.2 mol of Cl, and 0.80 mol of HCl. The following reaction becomes possible: H2(g) + Cl2(g) = 2HCl (g) The equilibrium constant K for this reaction is 0.419 at the temperature of the flask. Calculate the equilibrium molarity of Cl. Round your answer to two decimal places. xs ?

  • Suppose a 500. mL flask is filled with 0.50 mol of H, and 1.7 mol of...

    Suppose a 500. mL flask is filled with 0.50 mol of H, and 1.7 mol of 12. The following reaction becomes possible: H2(g) +12(g) = 2HI(g) The equilibrium constant K for this reaction is 3.30 at the temperature of the flask. Calculate the equilibrium molarity of HI. Round your answer to two decimal places. xs ?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT