Question

Five kg of oxygen (O2), initially at 430C, fills a closed, rigid tank. Heat transfer from the oxygen occurs at the rate 425 w for 10 minutes. Assuming the ideal gas model with k = 1.350 for the oxygen, determine its final temperature, in °C.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Five kg of oxygen (O2), initially at 430C, fills a closed, rigid tank. Heat transfer from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. Nitrogen (M-28.01 lb/ibmol) fills a closed rigid tank fitted with paddle wheel, initially at 8...

    4. Nitrogen (M-28.01 lb/ibmol) fills a closed rigid tank fitted with paddle wheel, initially at 80°F, 20 psia, and a volume of 2 ft3. The gas is stirred by the paddle wheel to a final temperature of 300°F During the process heat transfer from the gas to its surroundings occurs in an amount of 1.6 Btu. Assuming ideal gas behavior, determine the mass of gas and the work done. Kinetic and potential energy effects can be ignored. R 1545.bmol R(20...

  • Using Energy Concepts and the Ideal Gas ModelArgon contained in a closed, rigid tank, initially at...

    Using Energy Concepts and the Ideal Gas ModelArgon contained in a closed, rigid tank, initially at 50°C, 2 bar, and a volume of 2 m3, is heated to a final pressure of 8 bar. Assuming the ideal gas model with k = 1.67 for the argon, determine the final temperature, in °C, and the heat transfer, in kJ.

  • Argon in a closed, rigid tank. Temperature and heat transfer RTF

    Argon contained in a closed, rigid tank, initially at a temperature of 50C, pressure of 2 bar, and a volume of 2m^3, is heated to a final pressure of 8 bar. Assumingideal gas model with k=1.67 for the Argon, determine the final temperature in degrees celsius and heat transfer, in kJ.

  • 6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1...

    6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. As illustrated in Fig. P6.50, the tank is in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with cy = 0.733 kJ/kg . K...

  • A closed, rigid tank fitted with a paddle wheel contains 1.6 kg of air, initially at...

    A closed, rigid tank fitted with a paddle wheel contains 1.6 kg of air, initially at 200oC, 1 bar. During an interval of 10 minutes, the paddle wheel transfers energy to the air at a rate of 1 kW. During this time interval, the air also receives energy by heat transfer at a rate of 0.5 kW. These are the only energy transfers. Assume the ideal gas model for the air, and no overall changes in kinetic or potential energy....

  • 6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar....

    6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. The diagram below shows a tank in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with c 0.733 k.J/kg K and kinetic and potential energy...

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • A gas is combined in a closed rigid tank. An electric resistor in the tank transfer...

    A gas is combined in a closed rigid tank. An electric resistor in the tank transfer energy to the 5. gas at a constant rate of 1000 W. Heat trans fer between the gas and the surroundings occurs at the rate of Q = -60t, where is in watts, and t is time, in minutes. Determine the net change in energy of the gas after 15 min, in kJ. (20 pts) [IN 1 kg.m/s; 1 J=1 N.m; 1 kW =...

  • 5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now...

    5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now O2 is gradually cooled under constant volume until its temperature reaches 455 K. (18 Points) (a) Calculate the pressure of O2 at final state. (4 points) (b) Determine the boundary work. (6 points) (b) Calculate the heat transfer during this process. (8 Points) let me know if u want the property table MAE 320 - Thermodynamics + > e ecampus.wvu.edu/bbcswebdav/pid-6846897-dt-content-rid-82617141 1/courses/star50314.202005/MAE320-2020-Summer-HW04.pdf Q4 to Q6...

  • Problem 6.149 A rigid tank is filled initially with 5.0 kg of air at a pressure...

    Problem 6.149 A rigid tank is filled initially with 5.0 kg of air at a pressure of 0.4MPa and a temperature of 500 K. The air is allowed to discharge through a turbine into the atmosphere, developing work until the pressure in the tank has fallen to the atmospheric level of 0.1 MPa. Employing the ideal gas model for the air, determine the maximum theoretical amount of work that could be developed, in kJ. Ignore heat transfer with the atmosphere...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT