Question

A sinusoidal wave trav- o Slope 0.2 els along a string under tension. Figure 16-30 gives the slopes along the string at time t = 0.The scale of the x axis is set by x, 0.80 m. What is the amplitude of the wave? AV 0 x (m) -0.2

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A sinusoidal wave trav- o Slope 0.2 els along a string under tension. Figure 16-30 gives...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sinusoidal wave moving along a string under tension is described by the equation D ?,?...

    A sinusoidal wave moving along a string under tension is described by the equation D ?,? =0.002sin(10?−120?)(inSIunit) Where ? is the transverse displacement of the string, ? is the distance along the string and ? is the time. Find a) Amplitude of the transverse displacement of the string b) The wavelength of the traveling wave c) Its frequency of oscillation, and d) The speed of propagation of the wave

  • A sinusoidal transverse wave is traveling along a string in the negative direction of an x...

    A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure below shows a plot of the displacement as a function of position at time t = 0. The x axis is marked in increments of 10 cm and the y axis is marked in increments of 2 cm. The string tension is 3.1 N, and its linear density is 34 g/m. (a) Find the amplitude. m (b) Find the wavelength. m...

  • A sinusoidal transverse wave is travelling along a string in the negative direction of an x...

    A sinusoidal transverse wave is travelling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t = 0; the y intercept is 4.0 cm. The string tension is 3.3 N, and its linear density is 44 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave, (e) Find the maximum transverse speed of a particle in the...

  • A sinusoidal transverse wave of wavelength 19.0 cm travels along a string in the positive direction...

    A sinusoidal transverse wave of wavelength 19.0 cm travels along a string in the positive direction of an x axis. The displacement y of the string particle at x = 0 is given in the figure as a function of time t. The scale of the vertical axis is set by ys = 4 cm. The wave equation is to be in the form of y = ym sin(kx - ωt + φ). (a) At t = 0, is a...

  • Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction...

    Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t 0; the y intercept is 4.0 cm. The string tension is 2.1 N, and its linear density is 21 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave. (e) Find the maximum transverse speed of a particle...

  • A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass...

    A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’samplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as...

  • a. In the figure below, a string is tied to a sinusoidal oscillator at P and...

    a. In the figure below, a string is tied to a sinusoidal oscillator at P and runs over a rigid support at Q, and is stretched by a block of mass m. The separation L - 1.77 m, the linear mu = 16 g/m, and the oscillator frequency f = 125 Hz. The amplitude of the motion at P is small enough for that point to be considered a node. A node also exists at Q. If m = 2.000...

  • Chapter 16, Problem 009 A sinusoidal wave moving along a string is shown twice in the...

    Chapter 16, Problem 009 A sinusoidal wave moving along a string is shown twice in the figure, as crest A travels in the positive direction of an x axis by distance d" 6.0 cm in 4,2 ms. The tick marks along the axis are separated by 14 cm; height H 6.20 mm. If the wave equation is of the form y(x, t) Ym sin(kx wt), what are (a) yme (b) k, (c) , and (d) the correct choice of sign...

  • Wave on a String A string with linear mass density 2.0 g/m is stretched along the...

    Wave on a String A string with linear mass density 2.0 g/m is stretched along the positive x-axis under a tension of 20 N. The other end of the string, at x = 0m is tied to a hook that oscillates up and down at a frequency of 100Hz with a maximum displacement from equilibrium of 1.0 mm. At t= 0s, the hook is at it's lowest point. (a) What are the wave speed and the wavelength on the string?...

  • Three sinusoidal waves of the same frequency travel along a string in the positive direction of...

    Three sinusoidal waves of the same frequency travel along a string in the positive direction of an x axis. Their amplitudes are A, A/2, and A/3, and their phase constants are 0,T/2 and . Find: a. the amplitude and b. the phase constant of the resultant wave c. Plot the wave form of the resultant wave at t 0 and discuss its behavior as t increases.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT