Question

Golden method

The deflection of a uniform beam subject to a linearly increasing distributed load can be computed as

y=w0120EIL(−x5+2L2x3–L4x)

y=w0120EIL(−x5+2L2x3–L4x)

Given thatL=500cm,E=50,000kN/cm2,

I=30,000cm4

, and

w0=2.0kN/cm,


determine the point of maximum deflection graphically, using the golden-section search until the approximate error falls below

εs= 1% with initial guesses of

xl=0

and

xu=L

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Golden method
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • The deflection of a uniform beam subject to a linearly increasing distributed load can be compute...

    The deflection of a uniform beam subject to a linearly increasing distributed load can be computed by using the following equation: y = ( 120EIL Given that L 600 cm, I 30,000 cm, wo-2500 N/cm, and E 50,000 KN/cm2 2. Develop a Matlab code that would implement the Golden-Section search method to find the maximum deflection until the error falls below 1% with initial guesses of Xi = 0 and Xu-L. Display all of the following: xl, xu, d, x1...

  • Use bisection method to determine the point of maximum deflection of the beam subject to a linearly increasing distributed load shown in the figure below

    Use bisection method to determine the point of maximum deflection of the beam subject to a linearly increasing distributed load shown in the figure below (the value of x where dy/dx= 0). Then substitute this value into the equation to determine the value of the maximum deflection. Use the following parameter values in your computation: L = 600 cm, E=50,000 kN/cm2, I=30,000 cm4, and w0 =1.75 kN/cm. 

  • Problem statement Beam Deflection: Given the elastic deflection equation for a beam with the boundary and...

    Problem statement Beam Deflection: Given the elastic deflection equation for a beam with the boundary and loading conditions shown below, determine the maximum downward deflection (i.e. where dy/dx = 0) of a beam under the linearly increasing load wo = 10 kN/m. Use the following parameter values: L = 10m, E = 5x108 kN/m², 1 = 3x10-4 m4. Use the initial bracket guesses of XL = 0 m and xu = 10 m. Wo. wol(x5 + 2L?x3 – L^x), (1)...

  • Figure P5.13a shows a uniform beam subject to a linearly increasing distributed load. The equation for the resulting elastic curve is (see Fig. P5.135)

     Figure P5.13a shows a uniform beam subject to a linearly increasing distributed load. The equation for the resulting elastic curve is (see Fig. P5.135) Use bisection to determine the point of maximum deflection (that is, the value of x where dy/dx = 0). Then substitute this value into Eq. (P5.13) to determine the value of the maximum deflection. Use the following parameter values in your com- putation: L = 600 cm, E = 50,000 kN/cm², I = 30,000 cm, and w0...

  • Uniform beam under distributed load

    Case 1: Uniform beam under distributed load.In the shown Figure, a uniform beam subject to a linearly increasing distributed load. The deflection \(y(\mathrm{~m})\) can be expressed by \(y=\frac{w_{o}}{120 E I L}\left(-x^{5}+2 L^{2} x^{3}-L^{4} x\right)\)Where \(E\) is the modulus of elasticity and \(I\) is the moment of inertia \(\left(\mathrm{m}^{4}\right), L\) length of beam.Use the following parameters \(L=600 \mathrm{~cm}\), \(E=50,000 \mathrm{kN} / \mathrm{cm}^{2}, I=30.000 \mathrm{~cm}^{4}, w_{\mathrm{o}}=2.5\)\(\mathrm{kN} / \mathrm{cm}\), to find the requirements1) Develop MATLAB code to determine the point of maximum deflection...

  • Need help!! 1. (25 Points) In the figure below, figure (a) shows a uniform beam subject...

    Need help!! 1. (25 Points) In the figure below, figure (a) shows a uniform beam subject to a linearly increasing distributed load which starts a 0 at the left end and increases to Wo on the right end. As depicted in (b), the beam deflection can be computed with 4 120EIL where E is the modulus of elasticity [kN/cm2] and I is the moment of inertia [cm]. Calculate each of thee following quantities (take the derivatives by hand) and plot...

  • Refer to the textbook or other references specified in the course syllabus, read about Golden-Section Search...

    Refer to the textbook or other references specified in the course syllabus, read about Golden-Section Search Method for One-Dimensional Unconstrained Optimization and solve the following problem. An object can be projected upward at a specified velocity. If it is subject to linear drag, its altitude as a function of time can be computed as: 2= 20 + " (vo + mg) (1 – e-641m) mg, where z = altitude (m) above the earth's surface (defined as z = 0), zo...

  • Need solution for question 5.6 using python? tation to within e, 5.11 Determine the real root...

    Need solution for question 5.6 using python? tation to within e, 5.11 Determine the real root of x 80: (a) analytically and (b) with the false-position method to within e, = 2.5%. Use initial guesses of 2.0 and 5.0. Compute the estimated error Ea and the true error after each 1.0% teration 5.2 Determine the real root of (x) 5r - 5x2 + 6r -2 (a) Graphically (b) Using bisection to locate the root. Employ initial guesses of 5.12 Given...

  • I wonder how to a problem 5.13. This problem is related to applied numerical methods with Matlab(third edition). I want Matlab code. 5.13 Figure P5.13a shows a uniform beam subject to a lin- early...

    I wonder how to a problem 5.13. This problem is related to applied numerical methods with Matlab(third edition). I want Matlab code. 5.13 Figure P5.13a shows a uniform beam subject to a lin- early increasing distributed load. The equation for the result- ing elastic curve is (see Fig. P5.13b) htm U) (P5.13) 3 3" Use bisection to determine the point of maximum deflection (i.e, the value of x where dy/dx 0). Then substitute this value into Eq. (P5 13) to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT