Question
just the final answer
4. What are the four major characteristics of a closed-loop step response? a. Rise time, overshoot, settling time and steady-
I. The poles and zeros of a rational system function can be computed using the function: a) zeros b) roots c) rational d) tf
0 0
Add a comment Improve this question Transcribed image text
Answer #1

ste ad state eror wdl Fun (S) f1. O- e*ōeor.hio-...J 9vb Ora , , .. wrd no ,we com endure botu ste ody St.te stare eror istat

Add a comment
Know the answer?
Add Answer to:
just the final answer 4. What are the four major characteristics of a closed-loop step response?...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2b). i Determine the value in so that the damping ratio of the system is 0.5. (1 % marks) From the result obtained in , evaluate the transient response characteristics (rise...

  • Question #4 (25 points): Consider the open loop system that has the following transfer function 1 G(S) = 10s+ 35 Us...

    Question #4 (25 points): Consider the open loop system that has the following transfer function 1 G(S) = 10s+ 35 Using Matlab: a) Plot the step response of the open loop system and note the settling time and steady state 15 pts error. b) Add proportional control K 300 and simulate the step response of the closed loop 15 pts system. Note the settling time, %OS and steady state error. c) Add proportional derivate control Kp 300, Ko 10 and...

  • Closed-loop system response and characteristics, Proportional gain 10 < paste transfer function T...

    Closed-loop system response and characteristics, Proportional gain 10 < paste transfer function Ts as output from Matlab here> clear all: close all: ls J = 0.022R = 0.11;K = 0.02;R 1.5;L= 0.6; Closed loop Transfer function T(s) Cs-10; RRA pole (Tg) 22T zero (Tg) figure ; figure ; teS) characteristics natural frequency damping ratio Dr-abs(real (RpT (2)) ) / ettling time peak time ER忌 overshoot 032=100 rise time Step response of open-loop system: Pole-zero map: easte,pole-zero plot here> Pole-Zero Map...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value Kso that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 22 marks) ii. iii. From the result obtained in (i), evaluate the transient response characteristics (rise...

  • . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time,...

    . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise time,...

  • Given the following open loop plant: 48 G(s) s +2) (s+4)(s +6) (a) Design a state feedback contro...

    Need help with this problem asap, will rate it. Thank you. Given the following open loop plant: 48 G(s) s +2) (s+4)(s +6) (a) Design a state feedback controller to yield a 20% overshoot and a settling time of 1 second (2%). Place the third pole 10 times farther from the imaginary axis than the dominant pole pair (b) Determine the pre-filter constant N needed to reduce the steady-state error to a unit step input for the closed-loop system. (c)...

  • 1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation...

    1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation i. Using any simulation software package, plot the poles on the s-plane. ii. Using unit step input, plot the transient response when there is no additional third pole to the system. iii. Using unit step input, plot the transient response when there is an additional third pole occur at -200, -20, -10, and -2. Plot them in a single graph. Normalize all the plots...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT