Question

A very long, straight solenoid with a cross-sectional area of 1.92 cm2cm2 is wound with 86.9...

A very long, straight solenoid with a cross-sectional area of 1.92 cm2cm2 is wound with 86.9 turns of wire per centimeter. Starting at tt = 0, the current in the solenoid is increasing according to i(t)=i(t)= (( 0.164 A/s2A/s2 )t2)t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid.

Part A

What is the magnitude of the emf induced in the secondary winding at the instant that the current in the solenoid is 3.2 AA ?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hare: 19.2.cm? = 1.92.xlv.m? It has_86-9. turns-pez Ceantimeten - Se b r No. of_turns :_2609_mail_8690 m - length oool __tumsta thonn A d (0-1694?) TE= 0.164 flan nabatt Now i = 3.2A = 0.164+? to her han = 4042 sec E = 0.164 640x16?)( 8690)(5) 61-92x

Add a comment
Know the answer?
Add Answer to:
A very long, straight solenoid with a cross-sectional area of 1.92 cm2cm2 is wound with 86.9...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A very long, straight solenoid with a cross-sectional area of 2.33 cm2 is wound with 86.6...

    A very long, straight solenoid with a cross-sectional area of 2.33 cm2 is wound with 86.6 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t)= ( 0.176 A/s2 )t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. A.)What is the magnitude of the emf induced in the secondary winding at the instant...

  • A very long, straight solenoid with a cross-sectional area of 1.90 cm2 is wound with 89.7...

    A very long, straight solenoid with a cross-sectional area of 1.90 cm2 is wound with 89.7 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t)= ( 0.178 A/s2 )t2 . A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. A.What is the magnitude of the emf induced in the secondary winding at the...

  • A very long, straight solenoid with a cross-sectional area of 2.27 cm2 is wound with 92.7...

    A very long, straight solenoid with a cross-sectional area of 2.27 cm2 is wound with 92.7 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t)= ( 0.178 A/s2 )t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid What is the magnitude of the emf induced in the secondary winding at the instant...

  • A very long, straight solenoid with a cross-sectional area of 2.03 cm² is wound with 94.3...

    A very long, straight solenoid with a cross-sectional area of 2.03 cm² is wound with 94.3 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to 2(t) = ( 0.173 A/s2 )t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. What is the magnitude of the emf induced in the secondary winding at the...

  • A very long, straight solenoid with a cross-sectional area of 2.10 cm² is wound with 94.9...

    A very long, straight solenoid with a cross-sectional area of 2.10 cm² is wound with 94.9 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t) = (0.168 A/s²). A secondary winding of 5.0 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. Part A What is the magnitude of the emf induced in the secondary winding at the...

  • A very long, straight solenoid with a cross-sectional area of 2.20 cm is wound with 79.0...

    A very long, straight solenoid with a cross-sectional area of 2.20 cm is wound with 79.0 turns of wire per centimeter. Starting at t- O, the current in the solenoid is increasing according to t (0.130 A/s2)t2. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. What is the magnitude of the emf induced in the secondary winding at the instant that the current...

  • Problem 29.49 A very long, straight solenoid with a cross-sectional area of 1.80 cm' is wound...

    Problem 29.49 A very long, straight solenoid with a cross-sectional area of 1.80 cm' is wound with 87.2 turns of wire per centimeter. Starting at t = 0, the current in the solenoid is increasing according to i(t) = (0.169 A/s2 )ta. A secondary winding of 5 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. Part A What is the magnitude of the emf induced in the secondary...

  • A very long, straight solenoid with a cross-sectional area of 6.15 cm² is wound with 48...

    A very long, straight solenoid with a cross-sectional area of 6.15 cm² is wound with 48 turns of wire per centimeter, and the windings carry a current of 0.275 A A secondary winding of 2 turns encircles the solenoid at its center. When the primary circuit is opened, the magnetic field of the solenoid becomes zero in 4.75x10-2 s. Part A What is the average induced emf in the secondary coil? IVO ALDA O ? Submit Request Answer

  • 4. Toroidal solenoid #1 has mean radius r 1 = 40.0 cm, and cross-sectional area A1...

    4. Toroidal solenoid #1 has mean radius r 1 = 40.0 cm, and cross-sectional area A1 = 16.0 cm2. It is wound uniformly with N1 = 1000 turns of wire. Toroidal solenoid #2 has N2 = 100 turns of wire and is wound tightly around solenoid #1. If the current through the windings of toroidal solenoid #1 is changing at a rate of 1000 A/s, what is the emf induced in toroidal solenoid #2 in mV)?

  • A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns...

    A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter and the windings carry a current of 0.260 A. A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.2s. What average emf is induced in the second coil if it has a diameter of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT