Question

Problem 4. (6 marks) You are required to design a third-order Butterworth bandpass filter using ideal operational (6) Passband gain of 12 dB. (i) Lower cutoff frequency, f 6000 Hz. (ii) Upper cutoff frequency, u 12000 Hz. You are constrained to using 1 k? resistors in the lowpass filter and 10 nF capacitors in the highpass filter. Sketch the overall schematic design of your filter with all component values clearly labelled. You must show all of your work in obtaining these component values. porting work will receive no marks. Designs without sup-

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Asw ta uSi Bute wo rm bandpass l2d 8 → pass band Jain ft ta LDw Pas Ci PaSs AlOidu. Ay, AS (2 3. (3.98 10K -10k.3 - low a f low なん山otto 의 ol p Cu- ude d ו olpucluded 1 2 OvdL- tonl diasve av HPf LPF o/ 0 ton

Add a comment
Know the answer?
Add Answer to:
Problem 4. (6 marks) You are required to design a third-order Butterworth bandpass filter using ideal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • please need correct answer. I will upvote. Design a second-order digital bandpass Butterworth filter with a...

    please need correct answer. I will upvote. Design a second-order digital bandpass Butterworth filter with a lower cutoff frequency of 1.9 kHz, an upper cutoff frequency 2.1 kHz, and a passband ripple of 3dB at a sampling frequency of 8,000 Hz. a. Determine the transfer function and difference equation. b. Use MATLAB to plot the magnitude and phase frequency respon

  • Design lowpass IIR filter with the following specifications: Filter order = 2, Butterworth type C...

    Design lowpass IIR filter with the following specifications: Filter order = 2, Butterworth type Cut-off frequency=800 Hz Sampling rate =8000 Hz Design using the bilinear z-transform design method Print the lowpass IIR filter coefficients and plot the frequency responses using MATLAB. MATLAB>>freqz(bLP,aLP,512,8000); axis([0 4000 –40 1]); Label and print your graph. What is the filter gain at the cut-off frequency 800 Hz? What are the filter gains for the stopband at 2000 Hz and the passband at 50 Hz based...

  • 4. We wish to design a digital bandpass filter from a second-order analog lowpass Butterworth filter...

    4. We wish to design a digital bandpass filter from a second-order analog lowpass Butterworth filter prototype using the bilinear transformation. The cutoff frequencies (measured at the half-power points) for the digital filter should lie at ω 5t/12 and ω-7t/12. The analog prototype is given by 1 s2+/2s+1 with the half-power point at 2 Determine the system function for the digital bandpass filter. a) b) Make the transfer from LPF to BPF in the analog domain Make the transfer from...

  • 3. Design a bandpass FIR filter using Kaiser's formula for filter order, using Hamming window with...

    3. Design a bandpass FIR filter using Kaiser's formula for filter order, using Hamming window with the following specifications: the lower passband and stopband edge frequencies are fpi- 700 Hz, fs1 - 300 Hz, the upper passband and stopband edge frequencies fp2 - 2 kHz fs2 - 2400 Hz, the sampling frequency fs-10 kHz, and 6p-0.03, ando0.004.

  • Problem 2 a) Using 5 nF capacitors, design an active broad- band first-order bandreject filter with...

    Problem 2 a) Using 5 nF capacitors, design an active broad- band first-order bandreject filter with a lower cutoff frequency of 1000 Hz, an upper cut-off frequency of 5000 Hz, and a pass band gain of 10dB. b) Draw the schematic diagram of the filter. c) Write the transfer function to find H(jωo), where ωo is the center frequency of the filter. d) What is the gain (in decibels) of the filer at the center frequency? e) Using Matlab make...

  • 3.2 Simple Bandpass Filter Design The L-point averaging filter is a lowpass filter. Its passband width...

    3.2 Simple Bandpass Filter Design The L-point averaging filter is a lowpass filter. Its passband width is controlled by L, being inversely proportional to L. In fact, you can use the GUI altidemo to view the frequency response for different averagers and measure the passband widths. It is also possible to create a filter whose passband is centered around some frequency other than zero. One simple way to do this is to define the impulse response of an L-point FIR...

  • Problem 4 Use a 5 nF capacitor to design a series RLC bandpass filter. The center...

    Problem 4 Use a 5 nF capacitor to design a series RLC bandpass filter. The center frequency the filter is 8 kHz, and the quality factor is 1.5. Part A Specify the value of L. View Available Hint(s) EVO AQH vec ? L = 0.079 ml Submit Previous Answers * Incorrect; Try Again; 8 attempts remaining Part B Specify the value of R. 10 AEDIf vec ? R = k12 Submit Request Answer Problem 4 Use a 5 nF capacitor...

  • The MATLAB program below designs a lowpass filter for a passband edge frequency of 250Hz and...

    The MATLAB program below designs a lowpass filter for a passband edge frequency of 250Hz and a stopband edge of 350Hz. The sampling frequency is 2kHz. A Hamming window is used. (a) The program is on Webcampus. Run it and copy and paste the wvtool plots into Word. % FIR Filter Design (using wvtool) % Lowpass Design clear fpass 250; fstop 350; fs 2000; wp 2*pi* fpass/ fs; ws 2* pi fstop / fs; M=ceil(6.6 * pi / (ws-wp)) +...

  • Design a bandpass filter, using a cascade connection, to give a center frequency of 600 Hz,...

    Design a bandpass filter, using a cascade connection, to give a center frequency of 600 Hz, a bandwidth of 2 kHz, and a passband gain of 4. Use 250 nF capacitors. Part A Specify fal Express your answer to three significant figures and include the appropriate units. Part B Specify f2. Express your answer to three significant figures and include the appropriate units. Part C Specify RL Express your answer to three significant figures and include the appropriate units. Part...

  • Learning Goal: To analyze and design a passive, second-order bandpass filter using a series RLC circuit....

    Learning Goal: To analyze and design a passive, second-order bandpass filter using a series RLC circuit. A bandpass filter is needed for an equalizer, a device that allows one to select the level of amplification of sounds within a specific frequency band while not affecting the sounds outside that band. The filter should block frequencies lower than 1.8 kHz and have a resonant frequency of 5.4 kHz A 3.2 AF capacitor and any needed resistors and inductors are available to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT