Question

6. (20pts) Consider a particle of mass m and energy E approaching the step potential V(x) = { 0x< V.>0 x > 0 from negative va

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Consider a approching particle of mass m and energy E to the step potential given by V (n)- o aco O NO ato 6 Now Clasically t

Add a comment
Know the answer?
Add Answer to:
6. (20pts) Consider a particle of mass m and energy E approaching the step potential V(x)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Scattering #1 Consider the "downstep" potential shown. A particle of mass m and energy E, inciden...

    Scattering #1 Consider the "downstep" potential shown. A particle of mass m and energy E, incident from the left, strikes a potential energy drop-off of depth Vo 0 (2 pts) Using classical physics, consider a particle incident with speed vo. Use conservation of energy to find the speed on the right vf. ALSO, what is the probability that a given particle will "transmit" from the left side to the right side (again, classically)? A. B. (4 pts) This problem is...

  • A particle of mass m is in a potential energy field described by, V(x, y) =...

    A particle of mass m is in a potential energy field described by, V(x, y) = 18kx² +8ky? where k is a positive constant. Initially the particle is resting at the origin (0,0). At time t = 0 the particle receives a kick that imparts to it an initial velocity (vo, 2vo). (a) Find the position of the particle as a function of time, x(t) and y(t). (b) Plot the trajectory for this motion (Lissajous figure) using Vo = 1,...

  • In class we considered quantum tunneling of a particle of energy Eo through a barrier of...

    In class we considered quantum tunneling of a particle of energy Eo through a barrier of potential Vofor Vo > Eo. Here we focus on two aspects of the problem we ignored in class. In order to simplify we will only consider the initial first half of the barrier as shown below RegionI xS0 Regionx 20 Il There are two cases to consider: Eo< Vo Considered in class E>Vo Not considered in class Here we will focus on the second...

  • An electron in region I with a kinetic energy E < Vo is approaching the step...

    An electron in region I with a kinetic energy E < Vo is approaching the step potential as shown in the figure below. To determine how deep the electron can tunnel into the classical forbidden region II, calculate the penetration length l of the electron, defined as the distance x where the probability density ||2 =   of the penetrating electron has dropped to 1/e of its value at x = 0. Use: E = 3 eV V(x) = 0 for...

  • 3., A particle is scattered by the step potential, x 0. Calculate the transmission coefficient T ...

    introduction to quantum physics 3., A particle is scattered by the step potential, x<0, where Vo > 0. Calculate the transmission coefficient T as a function of energy E. Sketch T as a function of Vo for a fixed E. Explain the behavior of T as → oo. 3., A particle is scattered by the step potential, x 0. Calculate the transmission coefficient T as a function of energy E. Sketch T as a function of Vo for a fixed...

  • 2.5 ty which will be discussed in chapter 4 2.3 Consider a particle of mass m...

    2.5 ty which will be discussed in chapter 4 2.3 Consider a particle of mass m subject to a one-dimensional potential V(x) that is given by V = 0, x <0; V = 0, 0<x<a; V = Vo, x> Show that bound (E < Vo) states of this system exist only if k cotka = -K where k2 = 2mE/12 and k' = 2m(Vo - E)/h4. 2.4 Show that if Vo = 974/2ma, only one bound state of the system...

  • Consider a particle incident from the left on the potential step. Where E = 2 eV...

    Consider a particle incident from the left on the potential step. Where E = 2 eV V(x) {5 eV lo x < 0 x > 0 1) Find the wave function of the particle in two regions 2) Find reflection and transmission coefficients R and T

  • Consider a particle of mass m moving in a one-dimensional potential of the form V. for...

    Consider a particle of mass m moving in a one-dimensional potential of the form V. for 0<x<b, V(a) = 0 for Islal<e, for 1212, with V., b and c positive constants and c>b. a Explain why the wave function of the particle can be assumed to be cither an even function or an odd function of a. b For the case that the energy E of the particle is in the range 0<ESV., find the (unnormalized) even cigenfunctions and give...

  • Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...

    Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) Start with an expression for this potential energy and solve the Schrödinger 2. wave equation to get expressions for(x) for this particle in each region. (10 points) Apply the necessary boundary conditions to your expressions to determine an equation that, when solved for E, gives you the allowed energy levels for bound states of this particle....

  • A quantum particle of mass m is in the 1D potential: V(2) = <0, mw?z?, <...

    A quantum particle of mass m is in the 1D potential: V(2) = <0, mw?z?, < > (1) Find the energy eigenvalues for the lowest three eigenstates.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT