Question

A quantum particle of mass m is in the 1D potential: V(2) = <0, mw?z?, < > (1) Find the energy eigenvalues for the lowest thr

0 0
Add a comment Improve this question Transcribed image text
Answer #1

6 Vin) - KO corre Imw²x2 ko So given potential is for half harmonic oscillator. And In this potential States na 0, 2, 4, 6---

Add a comment
Know the answer?
Add Answer to:
A quantum particle of mass m is in the 1D potential: V(2) = <0, mw?z?, <...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. (20pts) Consider a particle of mass m and energy E approaching the step potential V(x)...

    6. (20pts) Consider a particle of mass m and energy E approaching the step potential V(x) = { 0x< V.>0 x > 0 from negative values of x. Consider the case E> Vo. a) Classically, what is the probability of reflection? b) Quantum mechanically, what is the probability of reflection? Express your result in terms of the ratio VIE. What is the probability of reflection if E= 2Vo?

  • 3.9. A particle of mass m is confined in the potential well 0 0<x < L...

    3.9. A particle of mass m is confined in the potential well 0 0<x < L oo elsewhere (a) At time t 0, the wave function for the particle is the one given in Problem 3.3. Calculate the probability that a measurement of the energy yields the value En, one of the allowed energies for a particle in the box. What are the numerical values for the probabilities of obtaining the ground-state energy E1 and the first-excited-state energy E2? Note:...

  • Consider a particle in a 1-dimensional ininite square well potential {0, V(z)=Í oo, (-a < z...

    Consider a particle in a 1-dimensional ininite square well potential {0, V(z)=Í oo, (-a < z <a) elsewhere The particle is initially localized in the right side of the well (O S a) Calculate the probability that at later times, an energy measurement will yield the energy of the first excited state of this system

  • (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width...

    (III) Quantum Tunneling Consider an electron in 1D in presence of a potential barrier of width L represented by a step function ſo I<0 or 1>L V U. r>0 and 2<L The total wavefunction is subject to the time-independent Schrödinger equation = EV (2) 2m ar2 +V where E is the energy of the quantum particle in question and m is the mass of the quantum particle. A The total wavefunction of a free particle that enters the barrier from...

  • Consider a particle of mass m moving in a one-dimensional potential of the form V. for...

    Consider a particle of mass m moving in a one-dimensional potential of the form V. for 0<x<b, V(a) = 0 for Islal<e, for 1212, with V., b and c positive constants and c>b. a Explain why the wave function of the particle can be assumed to be cither an even function or an odd function of a. b For the case that the energy E of the particle is in the range 0<ESV., find the (unnormalized) even cigenfunctions and give...

  • 3. Consider a particle of mass m moving in a potential given by: W (2, y,...

    3. Consider a particle of mass m moving in a potential given by: W (2, y, z) = 0 < x <a,0 < y <a l+o, elsewhere a) Write down the total energy and the 3D wavefunction for this particle. b) Assuming that hw > 312 h2/(2ma), find the energies and the corresponding degen- eracies for the ground state and the first excited state. c) Assume now that, in addition to the potential V(x, y, z), this particle also has...

  • Find the energy eigenvalues of a particle confined by a potential of the following form: +oo,...

    Find the energy eigenvalues of a particle confined by a potential of the following form: +oo, V(r)= { }mu22, if 2 0. if r0 < Sketch the potential so that you have a visual picture of it. Hint: Use the fact that we already know the energy eigenvalues and eigenfunctions of the Schrödi- inger equation in the quadratic potential and impose an additional requirement to the wave func- tions that follows from V(r) = 0. o for

  • 1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a)...

    1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a) What are the energy eigenfunctions n of the Hamiltonian for a single particle bound in this potential? You may write your answer in piece-wise form, with an arbitrary normalization. b) Derive the characteristic equation that the energy eigenvalues E, must satisfy in order to satisfy the eigenvalue equation Hy,-EnUn for eigen function Un c) Write a computer program1 to find the eigenvalues E, for...

  • 3. A particle is in a 1D box (infinite potential well) of dimension, a, situated symmetrically ab...

    3. A particle is in a 1D box (infinite potential well) of dimension, a, situated symmetrically about the origin of the x-axis. A measurement of energy is made and the particle is found to have the ground state energy: 2ma The walls of the box are expanded instantaneously, doubling the well width symmetrically about the origin, leaving the particle in the same state. a) Sketch the initial potential well making it symmetric about x - 0 (note this is different...

  • A particle of mass 5 kg is subject to a conservative force whose potential energy (in...

    A particle of mass 5 kg is subject to a conservative force whose potential energy (in joules) as a function of position (in meters) is given by the equation U(x) =-100x5e-1x [where x > 0] (a) Determine the position xo where the particle experiences stable equilibrium (b) Find the potential energy Uo of the particle at the position x 2106 The particle is displaced slightly from position x = xo and released (c) Determine the effective value of the spring...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT