Question

4. A lead compensator with a transfer function Ge(s) = K(s+0.5)/(s+3) has been designed for a Space vehicle with the transfer
0 0
Add a comment Improve this question Transcribed image text
Answer #1

soll !-. 6) of The desired Gls) = 1 pole is . The poles s=-11j The Angle deliciency is AT Od = 180-20 where O= 180-raño (+) =e The break point is found by dk zo where K = - $(5+3) B (Stors) = 2545²7 95+6) zo z) s20, -11 0:485 570-5)2 Hence the break

Add a comment
Know the answer?
Add Answer to:
4. A lead compensator with a transfer function Ge(s) = K(s+0.5)/(s+3) has been designed for a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A lead compensator with a transfer function Ge(s)=K(+0.5/(s+3) has been designed for a Space vehicle...

    4. A lead compensator with a transfer function Ge(s)=K(+0.5/(s+3) has been designed for a Space vehicle with the transfer function 1/s' such that at the dominant closed loop poles are located at -1 +/-j1. (0) What is the angle deficiency of the uncompensated system at the designed point provided by the location of the dominant poles? Show that the compensator provides the necessary lead angle at the designed point to satisfy the root locus angle criterion. What value of K...

  • Consider the automobile cruise-control system shown below: Engine ActuatorCarburetor 0.833 and load 40 3s +1 Compensator R(s)E(s) Ge(s) s +1 -t e(t) Sensor 0.03 1) Derive the closed-loop transfer fun...

    Consider the automobile cruise-control system shown below: Engine ActuatorCarburetor 0.833 and load 40 3s +1 Compensator R(s)E(s) Ge(s) s +1 -t e(t) Sensor 0.03 1) Derive the closed-loop transfer function of V(s)/R(s) when Gc(s)-1 2) Derive the closed-loop transfer function of E(s)/R(s) when Ge(s)-1 3) Plot the time history of the error e(t) of the closed-loop system when r(t) is a unit step input. 4) Plot the root-loci of the uncompensated system (when Gc(s)-1). Mark the closed-loop complex poles on...

  • A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus...

    A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus plot as shown below. The location of the roots for a system gain of K= 0.248 is show on the plot. At this location the system has a damping factor of 0.708 and a settling time of 4/1.5 = 2.67 seconds. A lead compensator is to be used to improve the transient response. (Note that nothing is plotted on the graph except for that...

  • Q. 1 (10 marks) For the system in Fig. 1 (a) Assume proportion control. Ge(s) =...

    Q. 1 (10 marks) For the system in Fig. 1 (a) Assume proportion control. Ge(s) = K. sketch the root locus for the closed-loop system (b). Using the angle condition, prove that s1 =-2 +j2 is not on the root locus. (c). Design a lead compensator such that the dominant closed-loop poles are located at s-2tj2. (d). What are the zero and pole of lead compensator Ge(s)? (e). With Ge (s) has the zero and pole found in (c), sketch...

  • Q. 1 (5 marks) For the system in Fig. (a). Assume proportion control, Gc(s)-K, sketch the root lo...

    pls answer dont just copy other solution or ur catching a dislike Q. 1 (5 marks) For the system in Fig. (a). Assume proportion control, Gc(s)-K, sketch the root locus for the closed-loop system (b). Using the angle condition, prove that s12 +j2 is not on the root locus. (c). Design a lead compensator Ge(s) - K such that the dominant closed-loop poles are located at s1--2 2. (d), What are the zero and pole of lead compensator G() (e)....

  • Consider the sontrol system shown in the figure below: R(S) + E(s) C(s) K (s +...

    Consider the sontrol system shown in the figure below: R(S) + E(s) C(s) K (s + 4)(s + 6) g) Sketch the uncompensated system root locus showing all details. (5 Points) h) Find the dominant closed loop poles of the uncompensated system to operate with a 16.3% overshoot and peak time tp = 0.7255 (make sure to show this point on the Root Locus) (5 Points) (s+z) Now we want to design a PI compensator of the form to increase...

  • 1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design...

    1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design a lead compensator for the closed-loop (CL) system whose open loop transfer function is given below. Design objectives: reduce the time constant by 50% while maintaining the same value of the damping ratio for the dominant poles. Please note that H(s)-1. Please use the method based on root locus plot. G(s) 2 [s(s+2)] Please include detailed step Obtain the location of the desired dominant...

  • 3 .0.2) 0(z) ℉.20-1011,. +20s+101)(s+20) 20), the damping ratio for the dominant Problem 2: For a...

    3 .0.2) 0(z) ℉.20-1011,. +20s+101)(s+20) 20), the damping ratio for the dominant Problem 2: For a unity feedback system with closed loop poles is to be 0.4, and the settling time is to be 0.5 second for the compensated system. a. b. c. d. Find the coordinates of the dominant poles. Find the location of the compensator zero if the compensator pole is at -15 (lead compensator) Find the required system gain. Compare the performance of the uncompensated and compensated...

  • A plant with the transfer function Gp(s)-- with unity feedback has the root locus shown in the figure below: (s+2)(s+4) Root Locus 1.5 C(s) 0.5 0.5 1.5 .3 Real Axis (seconds) (a) Determine K of G...

    A plant with the transfer function Gp(s)-- with unity feedback has the root locus shown in the figure below: (s+2)(s+4) Root Locus 1.5 C(s) 0.5 0.5 1.5 .3 Real Axis (seconds) (a) Determine K of Gp(s) if it is desired that the uncompensated system has a 10% OS (overshoot) to a step input. (4 points) a 5% overshoot and a peak time Tp 3.1 meets the requirements described in part (b) and achieves zero steady state (b) Compute the desired...

  • Stuck on this problem, an explanation of the answer would be very much appreciated!!

    Stuck on this problem, an explanation of the answer would be very much appreciated!! PROBLEM E3 A unity feedback system with loop transfer function G(o) is to be cascade-compensated, as shown in Figure P3 below. The closed-loop characteristic equation of the uncompensated system is given as G. (s) G(s) Cs) Figure P3. Unity feedback compensated control system block diagram. Do the following: (a) Determine the uncompensated system loop transfer function G(s). b) Sketch the root locus of the uncompensated system....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT