Question

3 .0.2) 0(z) ℉.20-1011,. +20s+101)(s+20) 20), the damping ratio for the dominant Problem 2: For a unity feedback system with

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

No -O Anshen : Setirg time (Tj- o-s sec seford ovdux tsarfn funttion is 0-S A le know O-u - 20No - 2 Soss poa to to test point -8土Jig-33 ;S -2934 of tha an P-6on 66-b have to be evaluatiel a 66.6.33NO d). Hakig a Sod oid uncon ponSafed tha untompat Closed toop pole at oSe loo aS 38 33S3 Кр lot 20 Chack 49.13 sina tais polNO -O Seax a-Xaal axis at 2086 avd -36 4 Tho pols aa rot Ave times futin tcot axis nos do a Secord odau a Stunpion is not Val

Add a comment
Know the answer?
Add Answer to:
3 .0.2) 0(z) ℉.20-1011,. +20s+101)(s+20) 20), the damping ratio for the dominant Problem 2: For a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • steps R(s) E(s) C(s) G(s) FIGURE P9.1 FIGURE P9.2 9. Consider the unity feedback system shown...

    steps R(s) E(s) C(s) G(s) FIGURE P9.1 FIGURE P9.2 9. Consider the unity feedback system shown in Figure P9.1 with [Section: 9.3] K G(s) (s+4)3 a. Find the location of the dominant poles to yield a 1.6 second settling time and an overshoot of 25%. b. If a compensator with a zero at -1 is used to achieve the conditions of Part a, what must the angular contribution of the compensator pole be? c. Find the location of the compensator...

  • C(s) G(s) Figure 1: A block diagram for Problems 1-4 For the given unity feedback system with G(s...

    C(s) G(s) Figure 1: A block diagram for Problems 1-4 For the given unity feedback system with G(s) - s 5)3' (a) Find the location of the dominant poles to yield a 1.2 second settling time and overshoot of 15% (b) If a compensator with a zero at-1 is used to achieve the conditions of Part a, what must be the angular contribution of the compensator pole be? (c) Find the location of the compensator pole. (d) Find the gain...

  • A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus...

    A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus plot as shown below. The location of the roots for a system gain of K= 0.248 is show on the plot. At this location the system has a damping factor of 0.708 and a settling time of 4/1.5 = 2.67 seconds. A lead compensator is to be used to improve the transient response. (Note that nothing is plotted on the graph except for that...

  • Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+2...

    Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+200) G(s) = Do the following using Matlab: a) Sketch the root locus. b) Find the range of gain, K that makes the system stable c) Find the value of K that yields a damping ratio of 0.707 for the system's closed-loop dominant poles. d) Obtain Ts, Tp, %OS for the closed loop system in part c). e) Find the value of K that yields...

  • 4. A lead compensator with a transfer function Ge(s)=K(+0.5/(s+3) has been designed for a Space vehicle...

    4. A lead compensator with a transfer function Ge(s)=K(+0.5/(s+3) has been designed for a Space vehicle with the transfer function 1/s' such that at the dominant closed loop poles are located at -1 +/-j1. (0) What is the angle deficiency of the uncompensated system at the designed point provided by the location of the dominant poles? Show that the compensator provides the necessary lead angle at the designed point to satisfy the root locus angle criterion. What value of K...

  • Consider a unity feedback control architecture where P(s) = 1/s^2 and C(s) = K * ((s + z)/(s + p)...

    Consider a unity feedback control architecture where P(s) = 1/s^2 and C(s) = K * ((s + z)/(s + p)) . It is desired to design the controller to place the dominant closed-loop poles at sd = −2 ± 2j. Fix the pole of the compensator at −20 rad/sec and use root locus techniques to find values of z and K to place the closed–loop poles at sd . Problem 4 (placing a zero) Consider a unity feedback control architecture...

  • 4. A lead compensator with a transfer function Ge(s) = K(s+0.5)/(s+3) has been designed for a...

    4. A lead compensator with a transfer function Ge(s) = K(s+0.5)/(s+3) has been designed for a Space vehicle with the transfer function 1/s? such that at the dominant closed loop poles are located at -1 +/-jl. (1) What is the angle deficiency of the uncompensated system at the designed point provided by the location of the dominant poles? Show that the compensator provides the necessary lead angle at the designed point to satisfy the root locus angle criterion. (iii) What...

  • Please solve with detailed steps (NO MATLAB Solution).Thanks in advance 13. Consider the unity feedback system...

    Please solve with detailed steps (NO MATLAB Solution).Thanks in advance 13. Consider the unity feedback system of Figure P9.1 with K G(s) s(s +20)(s +40) The system is operating at 20% overshoot. Design a compensator to decrease the settling time by a factor of 2 without affecting the percent overshoot and do the following: (Section: 9.3] a. Evaluate the uncompensated system's dominant poles, gain, and settling time. b. Evaluate the compensated system's dominant poles and settling time. c. Evaluate the...

  • 1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design...

    1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design a lead compensator for the closed-loop (CL) system whose open loop transfer function is given below. Design objectives: reduce the time constant by 50% while maintaining the same value of the damping ratio for the dominant poles. Please note that H(s)-1. Please use the method based on root locus plot. G(s) 2 [s(s+2)] Please include detailed step Obtain the location of the desired dominant...

  • I need help with this, provide clear answers, please. Thanks in advance. By gain compensation, the...

    I need help with this, provide clear answers, please. Thanks in advance. By gain compensation, the following system operates with a 19.3% overshoot when K- 281.69, Design a lead compensator to reduce the percentage overshoot to 10% and reduce the settling time by 1 sec. R(s) C(s) 4 +6)s +8) (c) Fill out the table below. (d) Simulate the step response to validate if the design goal is met. Compensated system with the lead compensator Uncompensated system Overall gain Dominant...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT