Question

Consider the automobile cruise-control system shown below: Engine ActuatorCarburetor 0.833 and load 40 3s +1 Compensator R(s)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ect) CS 0.03 A VCS) Rls) 32. 3 2 30% 4s+ .116 UCs) CS) ohen RS) C. V (s) R CS E CS) R CS) es) s+ 33 .665o Ctu moue bleak pont a H A ผู้) 24以 2010 rm 0.333-0 又 ds d S んat pont. The loa。 dam 00 66 Scanned with CamScanner CSome

Add a comment
Know the answer?
Add Answer to:
Consider the automobile cruise-control system shown below: Engine ActuatorCarburetor 0.833 and load 40 3s +1 Compensator R(s)E(s) Ge(s) s +1 -t e(t) Sensor 0.03 1) Derive the closed-loop transfer fun...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A lead compensator with a transfer function Ge(s) = K(s+0.5)/(s+3) has been designed for a...

    4. A lead compensator with a transfer function Ge(s) = K(s+0.5)/(s+3) has been designed for a Space vehicle with the transfer function 1/s? such that at the dominant closed loop poles are located at -1 +/-jl. (1) What is the angle deficiency of the uncompensated system at the designed point provided by the location of the dominant poles? Show that the compensator provides the necessary lead angle at the designed point to satisfy the root locus angle criterion. (iii) What...

  • 4. A lead compensator with a transfer function Ge(s)=K(+0.5/(s+3) has been designed for a Space vehicle...

    4. A lead compensator with a transfer function Ge(s)=K(+0.5/(s+3) has been designed for a Space vehicle with the transfer function 1/s' such that at the dominant closed loop poles are located at -1 +/-j1. (0) What is the angle deficiency of the uncompensated system at the designed point provided by the location of the dominant poles? Show that the compensator provides the necessary lead angle at the designed point to satisfy the root locus angle criterion. What value of K...

  • 1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design...

    1 CONTROL SYSTEM ANALYSIS & DESIGN Spring 2019 HW 7 Due 4/4/2019, Thursday, 11:59pm 1. Design a lead compensator for the closed-loop (CL) system whose open loop transfer function is given below. Design objectives: reduce the time constant by 50% while maintaining the same value of the damping ratio for the dominant poles. Please note that H(s)-1. Please use the method based on root locus plot. G(s) 2 [s(s+2)] Please include detailed step Obtain the location of the desired dominant...

  • Q. 1 (5 marks) For the system in Fig. (a). Assume proportion control, Gc(s)-K, sketch the root lo...

    pls answer dont just copy other solution or ur catching a dislike Q. 1 (5 marks) For the system in Fig. (a). Assume proportion control, Gc(s)-K, sketch the root locus for the closed-loop system (b). Using the angle condition, prove that s12 +j2 is not on the root locus. (c). Design a lead compensator Ge(s) - K such that the dominant closed-loop poles are located at s1--2 2. (d), What are the zero and pole of lead compensator G() (e)....

  • Please solve parts (a) and (b) neatly and show problem solving. Ignore reference to part 1, but please still plot the root loci. For the system given in Figure 1 a) Design a PD compensator with the t...

    Please solve parts (a) and (b) neatly and show problem solving. Ignore reference to part 1, but please still plot the root loci. For the system given in Figure 1 a) Design a PD compensator with the transfer function: to give a dominant root of the closed-loop characteristic equation of the compen- sated system at s -1+j1 (i.e., a settling time Ts of less than 6 seconds and a maximum overshoot Mo of less than 10%). Required Pre-Practical work] (b)...

  • Q. 1 (10 marks) For the system in Fig. 1 (a) Assume proportion control. Ge(s) =...

    Q. 1 (10 marks) For the system in Fig. 1 (a) Assume proportion control. Ge(s) = K. sketch the root locus for the closed-loop system (b). Using the angle condition, prove that s1 =-2 +j2 is not on the root locus. (c). Design a lead compensator such that the dominant closed-loop poles are located at s-2tj2. (d). What are the zero and pole of lead compensator Ge(s)? (e). With Ge (s) has the zero and pole found in (c), sketch...

  • 4. Referring to the closed-loop system shown as below, design a lead compensator Ge(s) such that...

    4. Referring to the closed-loop system shown as below, design a lead compensator Ge(s) such that the phase-margin is 45o, gain margin is not less than 8dB, and the static velocity error constant Ky is 4.0 sec1. Plot unit-step and unit-ramp response curves of the compensated system with MATLAB.

  • Consider the sontrol system shown in the figure below: R(S) + E(s) C(s) K (s +...

    Consider the sontrol system shown in the figure below: R(S) + E(s) C(s) K (s + 4)(s + 6) g) Sketch the uncompensated system root locus showing all details. (5 Points) h) Find the dominant closed loop poles of the uncompensated system to operate with a 16.3% overshoot and peak time tp = 0.7255 (make sure to show this point on the Root Locus) (5 Points) (s+z) Now we want to design a PI compensator of the form to increase...

  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • 1. Given a unity feedback system with the open-loop transfer function s(0.5s +1) .design a lead c...

    1. Given a unity feedback system with the open-loop transfer function s(0.5s +1) .design a lead compensator ,0 〈 α 〈 1, such that the desired closed-loop poles at -2+2j following steps: J, by completing the (a) Find the angle deficiency from the compensator, (b)Find the zero and poles of the compensator (c) Find constant gain Kc. 1. Given a unity feedback system with the open-loop transfer function s(0.5s +1) .design a lead compensator ,0 〈 α 〈 1, such...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT