Question

5. A 2 kg mass is attached to a massless spring of force constant k25 N/m. The spring is stretched 0,40 m from its equilibriu
0 0
Add a comment Improve this question Transcribed image text
Answer #1

0. Mazky, kz 25 Mlon 4x = 0,40m Energy E= 1/2k (Ax)² as E = * 25 *(0.4072 frequery. It a les HO E = (n+16) tw - 2 = (n+1, 1.Eos ħw Eos 1.06 Xiom X 2at 84 to = 1.06X164 x 242.14 X3.535 E = 2.3531 x 1033 Joule

i hope you understand the answer if yes then rate the answer otherwise comment for your doubt.

Add a comment
Know the answer?
Add Answer to:
5. A 2 kg mass is attached to a massless spring of force constant k25 N/m....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.64 kg mass is attached to a light spring with a force constant of 23.9...

    A 0.64 kg mass is attached to a light spring with a force constant of 23.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass _____ m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm _____ m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...

  • A spring with a spring constant of 780 N/m is stretched 8 cm from its equilibrium...

    A spring with a spring constant of 780 N/m is stretched 8 cm from its equilibrium position and released. a) If the mass attached to the spring is 4 kg, what is the frequency of the oscillation? b) What is the maximum kinetic energy of the mass? c) What is the maximum speed?

  • A spring with a spring constant of 340 N/m is stretched 15 cm from its equilibrium...

    A spring with a spring constant of 340 N/m is stretched 15 cm from its equilibrium position and released. a) If the mass attached to the spring is 2.7 kg, what is the frequency of the oscillation? b) What is the maximum kinetic energy of the mass? c) What is the maximum speed?

  • a 0.675 kg mass is attached to a spring of spring constant 42.4 n/m, pulled, and...

    a 0.675 kg mass is attached to a spring of spring constant 42.4 n/m, pulled, and released. what is the frequency of the resulting oscillation A 0.675 kg mass is attached to a spring of spring constant 42.4 N/m, pulled, and released. What is the frequency of the resulting oscillation? (Unit = Hz) Enter 2000 Acelas Corporation. All Rights Reserved ONHOQE

  • A 0.403 kg mass is attached to a spring with a force constant of 25.4 N/m...

    A 0.403 kg mass is attached to a spring with a force constant of 25.4 N/m and released from rest a distance of 3.20 cm from the equilibrium position of the spring. Calculate the speed of the mass when it is halfway to the equilibrium position.

  • A 0.76 kg mass is attached to a light spring with a force constant of 27.9...

    A 0.76 kg mass is attached to a light spring with a force constant of 27.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.56 kg mass is attached to a light spring with a force constant of 33.9...

    A 0.56 kg mass is attached to a light spring with a force constant of 33.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.90 kg mass is attached to a light spring with a force constant of 24.9...

    A 0.90 kg mass is attached to a light spring with a force constant of 24.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass Correct: Your answer is correct. m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm 1.84 Incorrect: Your answer is incorrect. Is energy conserved for this oscillating system? m/s...

  • A 0.20 kg mass is attached to a spring with a spring constant equal to 240...

    A 0.20 kg mass is attached to a spring with a spring constant equal to 240 N/m, and this mass-spring system is oscillating on a horizontal surface that is nearly frictionless. The spring was originally stretched a distance of 0.12 meters from its equilibrium (unstretched) length. a) How much did the potential energy of this mass-spring system change when the spring was originally stretched 0.12 meters? b) What is the maximum speed the mass will attain in its oscillation? c)...

  • A 0.28 kg mass is attached to a light spring with a force constant of 34.9...

    A 0.28 kg mass is attached to a light spring with a force constant of 34.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT