Question

14%) Problem 4: An object of height 3.3 cm is placed 4.8 cm in front of a converging lens of focal length 23 cm. all parts >
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given, ho = 3.3cm, so = 4.8cm object distance f = 23cm To find: @ s limage dist) Use Lens equation Use Lens Equation, ta s

Add a comment
Know the answer?
Add Answer to:
14%) Problem 4: An object of height 3.3 cm is placed 4.8 cm in front of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (13%) Problem 5: An object of height 2.9 cm is placed 29 cm in front of...

    (13%) Problem 5: An object of height 2.9 cm is placed 29 cm in front of a diverging lens of focal length 17 cm. Behind the diverging lens, and 11 cm from it, there is a converging lens of the same focal length. - A 50% Part (a) Find the location of the final image, in centimeters beyond the converging lens. Grade Summary Deductions 0% Potential 100% 1 E sin( cos() tan() cotan() asin() acos atan acotan sinh cosh() |...

  • (17%) Problem 9: An object of height 2.2 cm is placed 29 cm in front of...

    (17%) Problem 9: An object of height 2.2 cm is placed 29 cm in front of a diverging lens of focal length 16 cm. Behind the diverging lens, and Il cm from it, there is a converging lens of the same focal length. * 50% Part (a) Find the location of the final image, in centimeters beyond the converging lens. s"= 22.89 Grade Summary Deductions Potential HOME sin cos t an cotan asin) acos atan acotan() sinh Cosh0 tanh) Coanh)....

  • (6%) Problem ll: An object with height 0.95 cm is placed a distance 21 cm in...

    (6%) Problem ll: An object with height 0.95 cm is placed a distance 21 cm in front of a thin converging lens with focal length 6.75 cm, as shown The focal point locations are indicated by the small black circles. A 20% Part (a) Calculate and enter a value for the distance between the image and the lens given the values in problem statement. di = cm Grade Summary Deductions 0% Potential 100% п 7 8 9 HOME E TA...

  • (13%) Problem 7: An object 1.4 cm high is held 2.95 cm from a person's cornea,...

    (13%) Problem 7: An object 1.4 cm high is held 2.95 cm from a person's cornea, and its reflected image is measured to be 0.169 cm high. > 33% Part (a) What is the magnification? m= 1 Grade Summary Deductions Potential 100% 0% o E sin() cos() tan() cotan() asin() acos() atan() acotan() sinh() cosh) | tanh() | cotanh() | Degrees Radians ( 7 8 9 HOME 4 5 6 1 2 3 | + |-| 0 | || END...

  • (25%) Problem 4: A shopper standing 3.25 m from a convex security mirror sees his image...

    (25%) Problem 4: A shopper standing 3.25 m from a convex security mirror sees his image with a magnification of 0.275. 33% Part (a) What is his image distance in meters, measured from the surface of the mirror, given that the object distance is positive? d; = -0.89 d;=-0.89 Correct! 33% Part (b) What is the focal length of the mirror, in meters? f = -0.821 sino cos tan() cotan asino acos atan) acotan sinh cosh tanh) cotanh) Degrees Radians...

  • (11%) Problem 9: A certain slide projector has a 100 mm focal length lens. > *...

    (11%) Problem 9: A certain slide projector has a 100 mm focal length lens. > * 33% Part (a) How far away is the screen in meters, if a slide is placed 110 mm from the lens and produces a sharp image? d; = -21 Grade Summary Deductions 6% Potential 94% cancel notext HOME cos tan cotan asino acos atan) acotan() sinh cosh() tanh cotanh() Degrees Radians ( 7 8 9 E 1^ 4 5 6 1 2 3 -...

  • (13%) Problem 7: Consider a parallel plate capacitor having plates of area 1 .25 cmŕ that...

    (13%) Problem 7: Consider a parallel plate capacitor having plates of area 1 .25 cmŕ that are separated by 0.016 mm of neoprene rubber. You may assume the rubber has a dielectric constant x- 6.7. > 50% Part (a) What is the capacitance in μF? Grade Summary Deductions Potential 0% 100% cotan atan cosh acos sinh( tanh) cotanhh 4 5 6 1 2 3 0 Submissions Attempts remaining: 6 (3% per attempt) detailed view asin acotan o Degrees oRadians DELCLEA...

  • (5%) Problem 8: Consider a 470 nm wavelength blue light falling on a pair of slits...

    (5%) Problem 8: Consider a 470 nm wavelength blue light falling on a pair of slits separated by 0.035 mm. A At what angle (in degrees) is the first-order maximum for the blue light? Grade Summary Deductions 0% Potential 100% sino TT ( 9 HOME 7 8 45 E 6 cotan atan cosh cos tano asino acos acotan tanh cotanh Degrees O Radians Submissions Attempts remaining: 3 (0% per attempt) letailed view sinho 12 برا + - 0 END NO...

  • - 13.4 cm (13%) Problem 3: A ray of light, emitted beneath the surface of an...

    - 13.4 cm (13%) Problem 3: A ray of light, emitted beneath the surface of an unknown liquid with air above it, undergoes total internal reflection as shown in the figure. 15.0 cm Otheexpertta.com >> A 50% Part (a) What is the minimum index of refraction for the liquid? n1 min = 1 Grade Summary Deductions Potential 100% 0% ( o E sin() cos() tan() cotan() asin() acos() atan() acotan() sinh() cosh) | tanh() | cotanh) | Degrees Radians 7...

  • (20%) Problem 4: The shadow of a pendulum cast on a flat board moves on a...

    (20%) Problem 4: The shadow of a pendulum cast on a flat board moves on a straight line. By placing the x-axis on the straight line with the origin at the middle of the total path, the x-coordinate of the shadow is given by the following function: x(t) = 49cos(u), where t is in seconds and x is in centimeters. 425% Part (a) Find the speed, in centimeters per second, of the shadow at t = 1/4 s. VE Grade...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT