Question


1. A 480 V (rms) source supplies power to two loads connected in parallel. The first load draws 80 kW and 30 kVAR. The second

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1. A 480 V (rms) source supplies power to two loads connected in parallel. The first...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1, Two balanced three-phase loads are in parallel. Load 1 draws 10 kW at 0.8 PF...

    1, Two balanced three-phase loads are in parallel. Load 1 draws 10 kW at 0.8 PF lagging Load 2 draws 20 kVA at 0.6 PF leading a. b. The loads are supplied by a balanced three-phase 480 Vu source. (a) Draw the power triangle for the combined load. (b) Determine PF of the combined load. (c) Determine the magnitude of the line current from the source. (d) Y-connected inductors are now installed in parallel with the combined load. What value...

  • A 240V three phase power system supplies two loads in parallel: Load 1: measured line current...

    A 240V three phase power system supplies two loads in parallel: Load 1: measured line current 30A, power factor 0.85 lagging, and Load 2: measured power 10kW, reactive power -7.5kVar A. Determine the power factor of load 2. B. Determine the total real power (in kW), reactive power (in kVAR), apparent power (in kVA), power factor and line current (in A) of the two loads.

  • 10. Two loads connected in parallel draw a total of 2.4 kW at 0.8 pflagging from...

    10. Two loads connected in parallel draw a total of 2.4 kW at 0.8 pflagging from a 120-V rms, 60- Hz line. One load absorbs 1.5 kW at a 0.707 pf lagging. Determine: (a) the pf of the second load, INV 11. Calculate the line currents for the system shown in figure. Calculate also the total power and reactive power consumed by the load. w 12. For the balanced three-phase circuit in Fig.. Calculate the line currents, the phase voltage...

  • Two electrical loads are connected in parallel to a 380 V, 50 Hz, three phase supply....

    Two electrical loads are connected in parallel to a 380 V, 50 Hz, three phase supply. The first load consists of three identical impedance each 7 Ω resistance and 5Ω inductive resistance, connected in star. The second load consists of three identical impedances, each 12 Ω resistance and 8 Ω capacitive reactance connected in delta. Sketch the arrangement described above Calculate Zph1 and Zph2[Zph1= 8.6Ω 35.54°; Zph2= 14.42 Ω -33.69°] Determine Iph1 and Iph2[Iph1= 25.51A -35.54°; Iph2= 26.35A +33.69°] IL1...

  • Problem 7 Three three-phase wye-connected loads are in parallel across a three-phase supply. The first load draws a cur...

    Problem 7 Three three-phase wye-connected loads are in parallel across a three-phase supply. The first load draws a current of 10 A at pf- 0.93 (leading), and the second and third loads (each) draw a current of 20 A at pf= 0.85 (lagging). Suppose the line-to-line voltage is 240 V. Compute the following: a) The transmission line current b) The load power factor c) The complex power supplied by the source Problem 7 Three three-phase wye-connected loads are in parallel...

  • 3- Two balanced Y-connected loads in parallel, one drawing 25 kW at 0.6 power factor lagging...

    3- Two balanced Y-connected loads in parallel, one drawing 25 kW at 0.6 power factor lagging and the other drawing 15 kVA at 0.8 power factor leading, are supplied by a balanced, three-phase, 480-volt source. (a) Draw the power triangle for each load and for the combined load. (b) Determine the power factor of the combined load and state whether lagging or leading. (c) Determine the magnitude of the line current from the source. (d) ∆- connected capacitors are now...

  • 3. (40 points) Three-phase loads are connected in parallel across a 24 KV (line-line three-phase power...

    3. (40 points) Three-phase loads are connected in parallel across a 24 KV (line-line three-phase power supply. Load 1: 120 KVA at 0.8 power factor leading; Load 2: 180 KW at 0.6 power factor lagging, Load 3: 40 KW at unity power factor Find the total complex power of three loads; (ii) Draw the power triangle of the combined load (ii) Find the overall power factor (iv) Find the line current (magnitude only) in the power supply line.

  • ELE2601/101/3/2019 QUESTION 4 A 400 V three-phase, 50 Hz system, ABC sequence supplies the following loads: A star-connected load with the following phase impedances: A delta-connected load of eq...

    ELE2601/101/3/2019 QUESTION 4 A 400 V three-phase, 50 Hz system, ABC sequence supplies the following loads: A star-connected load with the following phase impedances: A delta-connected load of equal phase impedances: Use VAB as reference and determine the following quantities: 4.1 The magnitude and angle of the currents drawn by the star-connected load (IAN; lBN; ICN). 4.1.1 The magnitude and angle of the phase (IAB; lBc; ICa) and line (lA; ls; Ic) currents drawn by the delta-connected load. 4.1.2 (12)...

  • I. Two electric loads are connected in parallel to a source of value u(t) = 300...

    I. Two electric loads are connected in parallel to a source of value u(t) = 300 cos(380t) V. The first load absorbs 3 kW at a power factor of 0.5 lagging. The second load absorbs 4kW at a power factor of 0.8 leading. (a) Find the current I through the first load. (b) Find the total current I c) Find the total apparent power (d) Find the total average power e) Find the overall power factor of the two loads...

  • (30) In the circuit with a voltage source and two loads below, find the following: 2....

    (30) In the circuit with a voltage source and two loads below, find the following: 2. The complex power of each load a. b. The total complex power for the two loads - note units of power in the figure c. Sketch the triangle for the total complex power e total current from the source as a phasor assuming the line voltage at the load is 20820 VRMS The value of the parallel capacitance in parallel with the two loads...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT