Question
Please show all work
For the liquid phase elementary reaction A B- C where CAo 0.20 M, the conversion of A is 80% in a given PFR. 0.10 M and CBo
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solu tian alce Bo dsa て O-인 2. Co 2 0184nnel/ CD

Add a comment
Know the answer?
Add Answer to:
Please show all work For the liquid phase elementary reaction A B- C where CAo 0.20...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • C) in a semibatch reactor. The feed stream 3. (10 pts.) Consider an elementary liquid-phase reaction...

    C) in a semibatch reactor. The feed stream 3. (10 pts.) Consider an elementary liquid-phase reaction (A+B containing B with a constant concentration (CBo) and a constant flow rate (Do) is slowly fed to a reactor containing pure A with an initial concentration (CAo). Derive three differential equations for the mole balances of A, B, and C. Please provide the steps in detail, because the credits will be given based on the detailed procedure. 1

  • PROBLEM 2 The elementary liquid phase irreversible reaction (A+B -> C) takes place in a 1...

    PROBLEM 2 The elementary liquid phase irreversible reaction (A+B -> C) takes place in a 1 m² Mixed Flow Reactor with the equimolar mixture of A and B at the volumetric feed flow rate of 0.5 m3/min, the feed concentration of A equal to 1 mol/L, and the feed temperature of 300K. When the reaction takes place under isothermal conditions at 300K the conversion of A is 30%. When the reaction takes place adiabatically the exit temperature is 350K and...

  • R1 - LIQUID PHASE CHEMICAL REACTOR The elementary liquid phase reaction given below is carried out...

    R1 - LIQUID PHASE CHEMICAL REACTOR The elementary liquid phase reaction given below is carried out in a CSTR by isothermal operation. k > NaOAC + EtOH k = 3.59 L/mol.min NaOH + EtOAC (A) (B) (C) (D) The volume of the CSTR is 2 L and the flowrates of the feeds in the individual streams are 50 ml/min for both reactants. The concentrations of NaOH and EtoAc are 0.05 mol/L and 0.1 mol/L, respectively. [6] a) Calculate the conversion...

  • The elementary irreversible organic liquid-phase reaction. a+b==>c is carried out adiabatically in a flow reactor. An...

    The elementary irreversible organic liquid-phase reaction. a+b==>c is carried out adiabatically in a flow reactor. An equal molar feed in A and 8 enters at 27'C, and the volumetric flow rate is 2 dm3/sa nd CAo= 0.I k molfm3 graphically.on exal

  • The irreversible, endothermic, elementary, liquid-phase reaction: 2A ---> B, is carried out adiabatically in a 100 li...

    The irreversible, endothermic, elementary, liquid-phase reaction: 2A ---> B, is carried out adiabatically in a 100 liter PRF. Species A and inert liquid are fed to the reactor with concentrations CAo = 1.5 mol/l and CIo = 1.5 mol/l, while FAo=20 mol/min. The entering temperature is 400 K. Calculate the conversion and temperature at the exit of the reactor, given the additional information below: k = 0.0003 l/(mol*min) at 300 K E= 12000 cal/(mol* K) CpA = 10 cal/(mol*K), CpB...

  • PROBLEM 1 The elementary liquid phase irreversible reaction (A + B -> C) is to be...

    PROBLEM 1 The elementary liquid phase irreversible reaction (A + B -> C) is to be carried out in a flow reactor. An equimolar feed with A and B enters the reactor at 300K at a volumetric flow rate of 2 L/s, and feed molar concentration of A equal to 0.1 kmol/m3 a. A. Calculate the conversion of A that can be achieved in one 500 Liter Mixed Flow Reactor under adiabatic conditions. b. Calculate the conversion of A that...

  • . Question 2: The elementary, reversible, organic, liquid-phase reaction is carried out adiabatically in a CSTR...

    . Question 2: The elementary, reversible, organic, liquid-phase reaction is carried out adiabatically in a CSTR where 65% conversion is achiewd Ated'anonn of A and 50% excess 8, enters the reactor at 27°C with a volumetric flow rate of 2 L/s and a Cos of O.1 mol/L culate the temperature inside the reactor 2. Calculate the equilibrium conversion at the operating temperature. How close (in 3. Calculate the CSTR volume percentage) the conversion is from the equilsbrium conversion? If the...

  • An elementary reaction is operated in liquid phase in a perfect mixed flow (CSTR) reactor A...

    An elementary reaction is operated in liquid phase in a perfect mixed flow (CSTR) reactor A 3B The feeding is composed of pure reactant A at an inlet molar flowrate of 1mol.h. The reaction advancement ? is 0.8 mol.h-1. a) Compute the partial molar flowrates of A and B at the reactor outlet b) ? (h) the space time, is defined as the ratio between the volume of the liquid mixture ver the volumetric flowrate of the feeding stream q(m.h),...

  • 1. Consider the following irreversible, zero-order, liquid-phase reaction: A ➝ B. The reaction is strongly exothermic,...

    1. Consider the following irreversible, zero-order, liquid-phase reaction: A ➝ B. The reaction is strongly exothermic, or ∆???? ? ≪ 0. For a given conversion XA, would an adiabatic CSTR and an adiabatic PFR require the same volume? If not, which reactor requires less volume? Justify your answer physically.

  • Hi everybody,can you help me for problem 4 in the attach . Thank for help! The...

    Hi everybody,can you help me for problem 4 in the attach . Thank for help! The elementary reversible reaction A + B 2C occurs in the liquid phase in isothermal CSTR. A stream containing equimolar amounts of A and B in a solvent enters. the reactor, and the conversion of A is measured to be 60%. The equilibrium conversion o A under the same inlet conditions is known to be 80%. The volumetric flowrate into the process is to be...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT