Question

A monatomic ideal gas occupies a volume Vi, which is then decreased to Vf = 1/2...

A monatomic ideal gas occupies a volume Vi, which is then decreased to Vf = 1/2 Vi via an adiabatic process. Which relationship is correct for the pressures of this gas?

a) pf = pi
b) pf = 25/3 pi
c) pf = 0.55/3 pi
d) pf = 0.5 pi

0 0
Add a comment Improve this question Transcribed image text
Answer #1

for monoatomic ideal gas relation between Pand Vis PV\gamma=constant

Pi/Pf=(Vf/Vi)\gamma

here Vf=1/2 Vi,\gamma=5/3=1.66,then

Pi/Pf=(1/2)1.66=0.316

Pi=0.316 Pf

Pf=3.16 Pi

Add a comment
Know the answer?
Add Answer to:
A monatomic ideal gas occupies a volume Vi, which is then decreased to Vf = 1/2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Part D please An ideal monatomic gas initially has temperature Ti and pressure pi. It is...

    Part D please An ideal monatomic gas initially has temperature Ti and pressure pi. It is to expand from volume V to volume Vf. (Use any variable or symbol stated above as necessary.) (a) If the expansion is isothermal, what is the final pressure? (b) If the expansion is isothermal, what is the work done by the gas? 42) 1219 (c) If, instead, the expansion is adiabatic, what is the final pressure? (d) If the expansion is adiabatic, what is...

  • A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure...

    A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. a) Did the gas expand or contract? (b) What is the ratio of its final volume to its initial volume? A monatomic ideal gas at room temperature undergoes an adiabatic process such that its final pressure is 3.75 times its initial pressure. (a) Did the gas expand or contract? o expand o contract (b) What is the ratio...

  • A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different...

    A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different paths for expansion. Path 1: The gas expands quasistatically and isothermally to (Va, Pz. T2) Path 2: First the gas expands quasistatically and adiabatically (V2, P.,T-),where you will calculate P T. Then the gas is heated quasistically at constant volume to (Va. P2 T1). a. Sketch both paths on a P-V diagram. b. Calculate the entropy change of the system along all three segments...

  • Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder...

    Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder of 290 K corresponding to the isothermal compression step. Then the volume of the gas is further compressed by a factor of 7.5 in the adiabatic compression step. a) Find the temperature at the final step of the adiabatic compression. b) What is Thot for the isothermal expansion step? c) What is the maximum thermodynamic efficiency for this engine? d) How much would the...

  • 7.5) A 1.15 -mol quantity of monatomic ideal gas undergoes the following cyclic process. The gas...

    7.5) A 1.15 -mol quantity of monatomic ideal gas undergoes the following cyclic process. The gas starts at point a at STP. It expands isothermally to point b, where the volume is 2.2 times its original volume. Next, heat is removed while keeping the volume constant and reducing the pressure. Finally, the gas undergoes adiabatic compression, returning to point a. a. Calculate the pressures at b and c. (answers in Pa) **Find the volumes at a and b first. **Use...

  • The volume of a monatomic ideal gas increases by a factor of 2 in an adiabatic...

    The volume of a monatomic ideal gas increases by a factor of 2 in an adiabatic expansion. By what factor does its pressure change?

  • An ideal monatomic gas goes from P1 = 150 atm and V1 = 25 m3 to...

    An ideal monatomic gas goes from P1 = 150 atm and V1 = 25 m3 to P2 and V2 via an adiabatic process. If P2 = 40 atm, what is V2 in m3?

  • Dmole of an ideal gas follows the cycle shown in the figure. 1-2 is isochoric process,...

    Dmole of an ideal gas follows the cycle shown in the figure. 1-2 is isochoric process, 2-3 is adiabatic process and 3-1 is isobaric process. Vi, Pi are given; V2-2V, P2- P/3. Determine (according to P1, V1) a) Adiabatic coefficient y and molar specific heats Cv and Cp (from the process 2-3) ? b) The heats from 1-2 and 3-1 processes? c) The thermal efficiency of the engine operating with this cycle. PI P2 V2 VI .. Dmole of an...

  • Consider a monatomic ideal gas operating through the Carnot cycle. The initial volume of the gas is V1 = 340x 10-3m3 .

    Consider a monatomic ideal gas operating through the Carnot cycle. The initial volume of the gas is V1 = 340x 10-3m3 .Part (a) What types of processes are going on for each step in this process? Part (b) During the isothermal compression step, the volume of gas is reduced by a factor of 4. In the adiabatic heating step, the temperature of the gas is doubled. What is the volume at point 3. in cubic meters? Part (c) What is the volume at...

  • A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an...

    A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an initial pressure of P = 360 kPa and temperature T = 275 K. The gas undergoes an isobaric expansion to V2 = 0.55 m3 and then an isovolumetric heating to P2 = 680 kPa. a) Calculate the number of moles, n, contained in this ideal gas. b) Calculate the temperature of the gas, in kelvins, after it undergoes the isobaric expansion. c) Calculate the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT