Question

Consider a monatomic ideal gas operating through the Carnot cycle. The initial volume of the gas is V1 = 340x 10-3m3 .


Consider a monatomic ideal gas operating through the Carnot cycle. The initial volume of the gas is V1 = 340x 10-3m3 .

image.png

Part (a) What types of processes are going on for each step in this process? 

Part (b) During the isothermal compression step, the volume of gas is reduced by a factor of 4. In the adiabatic heating step, the temperature of the gas is doubled. What is the volume at point 3. in cubic meters? 

Part (c) What is the volume at point 4. in cubic meters?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider a monatomic ideal gas operating through the Carnot cycle. The initial volume of the gas is V1 = 340x 10-3m3 .
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder...

    Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder of 290 K corresponding to the isothermal compression step. Then the volume of the gas is further compressed by a factor of 7.5 in the adiabatic compression step. a) Find the temperature at the final step of the adiabatic compression. b) What is Thot for the isothermal expansion step? c) What is the maximum thermodynamic efficiency for this engine? d) How much would the...

  • The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas....

    The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas. During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles, while during the adiabatic expansion the volume increases by a factor of 5.7. The work output of the engine is 900 J in each cycle. Compute the temperatures of the two reservoirs between which this engine operates.

  • A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature...

    A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature 25C., pressure of 100KPa and volume of 0.01m3. The system is then compressed isothermally to a volume 0.002m3. From that point, the gas undergoes an adiabatic compression ( with gamma= 1.4), until the volume further reduces to 0.001m3. After that, the system goes an isothermal expansion process to a point where the pressure of the system is 263.8KPa. Then the system continues the cycle...

  • A 1.00-mol sample of an ideal gas (γ = 1.40) is carried through the Carnot cycle....

    A 1.00-mol sample of an ideal gas (γ = 1.40) is carried through the Carnot cycle. Before the isothermal expansion takes place, the pressure of the gas is 25.0 atm and the temperature is 600 K. Before the isothermal compression, the pressure is 1.00 atm and the temperature is 400 K. Determine the pressures and volumes at all end points in the Carnot cycle (at each end point, the cycle switches between different processes).

  • An ideal gas (1.82 moles) undergoes the following reversible Carnot cycle. (1) An isothermal expansion at...

    An ideal gas (1.82 moles) undergoes the following reversible Carnot cycle. (1) An isothermal expansion at Thot=850K from 3.20L to 20.40L. (2) An adiabatic expansion until the temperature falls to 298K. The system then undergoes (3) an isothermal compression and a subsequent (4) adiabatic compression until the initial state is reached. a. Calculate work and ΔS for each step in the cycle and its overall efficiency. b. Determine ΔH and ΔU for steps (1) and (2). c. Explain why ΔUcycle=...

  • Consider a Carnot cycle starting at the state of highest pressure and smallest volume. Call the...

    Consider a Carnot cycle starting at the state of highest pressure and smallest volume. Call the isothermal expansion that starts at this state step 1, the adiabatic expansion which follows step 2, the isothermal compression that then follows step 3, and the adiabatic compression which returns the system to the initial state step 4. In which step does the entropy of the system increase?

  • 7.5) A 1.15 -mol quantity of monatomic ideal gas undergoes the following cyclic process. The gas...

    7.5) A 1.15 -mol quantity of monatomic ideal gas undergoes the following cyclic process. The gas starts at point a at STP. It expands isothermally to point b, where the volume is 2.2 times its original volume. Next, heat is removed while keeping the volume constant and reducing the pressure. Finally, the gas undergoes adiabatic compression, returning to point a. a. Calculate the pressures at b and c. (answers in Pa) **Find the volumes at a and b first. **Use...

  • My questions: What are the volume of c and d? How do you calculate the delta...

    My questions: What are the volume of c and d? How do you calculate the delta S and delta S surroundings of each step? Consider the reversible Carnot cycle shown below. a PA Isothermal expansion Thoil Adiabatic compression Toold Pressure Thot PE Adiabatic expansion Thot cold Po- Isothermal compression Trot Toold Po Toold va Vc Vd Vo Volume The "working substance" (gas inside the piston, in red above) is 3.10 moles of a monatomic ideal gas, with Cvm = 3R/2....

  • 12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed...

    12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed by isobaric compression, p = cst.if P1 = 4.4atm, p2 = 1.7atm → ?- m calculate the work done by gas during the expansion. Express work in J = N·m! • For isothermal processes, AT = 0 T = cst → w=faw=fr&v=/MRT AV 594 Show your work like: `x-int_0^5 v(t)dt rarr x-int_0^5(-4*t)dt=-50 m 13. 1 mole of an ideal gas undergoes an isothermal expansion...

  • A three-step cycle is undergone reversibly by 3.90 mol of an ideal gas: (1) an adiabatic...

    A three-step cycle is undergone reversibly by 3.90 mol of an ideal gas: (1) an adiabatic expansion that gives the gas 3.96 times its initial volume, (2) a constant-volume process, (3) an isothermal compression back to the initial state of the gas. We do not know whether the gas is monatomic or diatomic; if it is diatomic, we do not know whether the molecules are rotating or oscillating. What are the entropy changes for (a) the cycle, (b) process 1,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT