Question

Five moles of carbon dioxide (CO2), initially 3 atm and 300 K, is trapped inside a piston-cylinder assembly. It is then allowed to expand against atmospheric pressure adiabatically. The constant- pressure heat capacity of CO2 is given by the following equation: p = 5.4574 (1.045 × 10-3)(T/K)-(1.157 × 105)(T/K)-2 (a) If we assume that the expansion is infinitely slow and quasi-static, calculate the final temperature and total volume of the carbon dioxide gas when it reaches 1 atm. Also calculate the work done in the process. (b) The other extreme is to assume sudden expansion. Repeat your calculations in Part (a) in this scenario

0 0
Add a comment Improve this question Transcribed image text
Answer #1

B. ideal 3x1013a5 c with tu Sinte R3Imol-k 丁 410000 CT-300 300T66055T 6525 0 O2175T 一4810000-0 70.68 K Paatm ol3 25 Pa va : O,029 m3 Co 28 1-28-1 (033 5xlo132 34.016 kT. 34.016 KT mole b.

Add a comment
Know the answer?
Add Answer to:
Five moles of carbon dioxide (CO2), initially 3 atm and 300 K, is trapped inside a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • [8] Consider a system consisting of 1.5 mol CO2(g), initially at 15oC and 9.0 atm and...

    [8] Consider a system consisting of 1.5 mol CO2(g), initially at 15oC and 9.0 atm and confined to a cylinder of cross-section 100.0 cm2. The sample is allowed to expand adiabatically against an external pressure of 1.5 atm until the piston has moved outwards through 15 cm. Assume that carbon dioxide may be considered a perfect gas with Cv.m-288] K-1 mol-1, and calculate (a) q, (b) w, (c) Δυ, (d) ΔΤ, (e) as

  • Consider a system consisting of 3.0 mol CO2(g), initially at 35°C and 9.0 atm and confined...

    Consider a system consisting of 3.0 mol CO2(g), initially at 35°C and 9.0 atm and confined to a cylinder of cross-section 100.0 cm2. The sample is allowed to expand irreversibly and adiabatically against an external pressure of 2.5 atm until the piston has moved outwards through 25 cm. Assume that carbon dioxide may be considered a perfect gas with CV,m = 28.8 J K–1 mol–1, and calculate (a) q, (b) w, (c) ΔU, (d) ΔT, (e) ΔS.

  • A piston-cylinder arrangement contains Carbon dioxide (CO2) initially at 66 kPa and 400 K, undergoes an...

    A piston-cylinder arrangement contains Carbon dioxide (CO2) initially at 66 kPa and 400 K, undergoes an expansion process with pressure-volume relationship of PV 1.2 = Costant.to a final temperature of 298 K. Assuming the gas to be an ideal gas, determine the final pressure (kPa), the work done and the heat transfer each in kJ.

  • a piston -cylinder device contains 2.5 Kg of carbon dioxide (CO2 ) initially at 100 KPa...

    a piston -cylinder device contains 2.5 Kg of carbon dioxide (CO2 ) initially at 100 KPa and 300o C. The carbon dioxide is then compressed to 200 kPa following a process of Pv1.25 =constant. Determine (A) the boundary worked needed for the process (B) The temperature after compression . use Ideal gas state and Pressure in absolute pressure ; R=0.1889 KJ/Kg-K

  • Carbon dioxide contained in a piston-cylinder arrangement, initially at 6 bar and 400K, undergoes an expansion...

    Carbon dioxide contained in a piston-cylinder arrangement, initially at 6 bar and 400K, undergoes an expansion to a final temperature of 298 k, during which the pressure-volume relationship if pV^1.2 = constant. Assuming the ideal gas model for the CO2, determine the final pressure, in bar, and the work and heat transfer, each in kJ/kg

  • Problem 2 A spring-loaded piston-cylinder device contains 1 kg of carbon dioxide that is initially at...

    Problem 2 A spring-loaded piston-cylinder device contains 1 kg of carbon dioxide that is initially at 100 kPa and 25°C (State 1). Heat is added until the gas reaches 800°C, at which point the pressure is 300 kPa (State 2) (a) Determine the boundary work (kJ) done by the CO2. Assume the spring is linear. (b) Determine the amount of heat transfer (kJ) into the CO2. Data for CO2: R = 0.1889 kJ/(kg K), Cpo = 0.846 kJ/(kg K), Cvo...

  • A cylinder contains 0.250 mol of carbon dioxide (CO2) gas at a temperature of 27.0∘C. The...

    A cylinder contains 0.250 mol of carbon dioxide (CO2) gas at a temperature of 27.0∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 1.00 atm on the gas. The gas is heated until its temperature increases to 127.0∘C. Assume that the CO2 may be treated as an ideal gas. How much work W is done by the gas in this process? What is the change in internal energy ΔU of the gas? How much...

  • A cylinder contains 0.300 mol of carbon dioxide (CO2)gas at a temperature of 23.0 ∘C. The...

    A cylinder contains 0.300 mol of carbon dioxide (CO2)gas at a temperature of 23.0 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 1.00 atm on the gas. The cylinder is placed on a hot plate and a 920 J of heat flows into the gas, thereby raising its temperature to 130 ∘C. Assume that the CO2 may be treated as an ideal gas. 1. What is the change in internal energy of the...

  • 1. When 2 moles of carbon dioxide is heated at a constant pressure of 2 atm,...

    1. When 2 moles of carbon dioxide is heated at a constant pressure of 2 atm, the temperature increases from 300°C to 370°C. (The molar heat capacity of CO2 at constant pressure is a. Find AH. o43.ISk b. Find ΔU 2. 0.01 mole of argon at 5 Cand 1 atm is expanded to 1 L and heated to 75°c. a. Calculate the change in entropy n 12 b. The argon, after expansion, is now gradually taken to a higher elevation...

  • Calculate the ratio of the effusion rate of oxygen (O2) to that of carbon dioxide gas...

    Calculate the ratio of the effusion rate of oxygen (O2) to that of carbon dioxide gas (CO2). Express your answer in decimal form and calculate your answer to at least four sig figs. 4.690 Graham's Law of Effusion is: rate/ratez - (M/M)2 where M - molar mass A cylinder with a moveable piston contains 92g of Nitrogen. The external pressure is constant at 1.00 atm. The initial temperature is 200K. When the temperature is decreased by 70 K, by putting...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT