Question

3. Water flowing through a pipe assumes a laminar-flow velocity profile at some section is parabolic: u(0) -4J Figure 2 where u(r) is the velocity at any position r, ß is a constant,-11s the viscosity of water, and r is the radial distance from the pipe centerline. (a) Develop an equation for u(r) assuming a parabolic velocity profile and using the known velocities at the walls u(ro)-0 and the center u(0) (Just use symbols). (b) Develop an equation for shear stress in the fluid at the wall of the pipe (Just use symbols). (c) If the given profile persists a distance L along the pipe, what is the force on the wall due to the moving water and what is its direction? (Hint: The force on the wall is equal in magnitude but in the opposite direction of that in the fluid.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
3. Water flowing through a pipe assumes a laminar-flow velocity profile at some section is parabolic:...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. (20 marks) The fully-developed, laminar fluid flow through a circular pipe is considered to be...

    2. (20 marks) The fully-developed, laminar fluid flow through a circular pipe is considered to be one dimensional with a velocity profile given by u(r) = Umax(1 - 52/R2), where R is the radius of the pipe, r is the radial distance from the center of the pipe, and Umax is the maximum flow velocity at the center of the pipe. a) Derive a relation for the drag force applied by the fluid on a section of the pipe of...

  • Q5. Sketching a suitable control volume, show that the velocity profile V(r) for steady, fully laminar...

    Q5. Sketching a suitable control volume, show that the velocity profile V(r) for steady, fully laminar flow in a horizontal pipe is given by V(r)- whereis is the pressure drop per unit length of pipe, R is the pipe radius and u the dynamic viscosity of the fluid. (10 marks) Thereafter develop Poiseuille's law for the volume flow rate O in the form SuL (10 marks) Hence show that the head loss h is given by where Vis the mean...

  • 1. Some non-Newtonian fluids behave as a Bingham plastic for which shear stress can be expressed...

    1. Some non-Newtonian fluids behave as a Bingham plastic for which shear stress can be expressed as + For laminar flow of a Bingham plastic in a horizontal pipe of radius R, the velocity profile is given as 4wr -R)+ (r-R), where AP/L is the constant pressure drop along the pipe per unit length, is the dynamic viscosity,r is the radial distance from the centerline, and is the yield stress of Bingham plastic. Develop a relation for (a) the shear...

  • Only need help with Question 3, thanks ;) The actual velocity profile is given by the...

    Only need help with Question 3, thanks ;) The actual velocity profile is given by the Poiseuille equation as follows: ()APR where AP is the pressure driving force, R is the tube radius, u is the fluid viscosity, Lis the tube length, and r is the radial position of interest. A couple of notes: . Assume that the fluid has a viscosity similar to water (rester 103 Pa s) Winter 2019 Il. The radial position r is defined to be...

  • #1 Laminar Flow in Pipes The axial velocity in a pipe of radius R is given by, . Find the value o...

    Fluid Mechanics #1 Laminar Flow in Pipes The axial velocity in a pipe of radius R is given by, . Find the value of r (as a fraction of R) that maximizes u(r). How does this value of velocity compare with Vc? Compute the wall shear stress, du or Perform a control volume analysis on a pipe section of length e. Relate the pressure drop across the pipe section to the shear stress. Substitute the relation above for tw to...

  • 5.16. Water is flowing in a 3-cm-diameter pipe at an average velocity of Uav 2 m/s....

    5.16. Water is flowing in a 3-cm-diameter pipe at an average velocity of Uav 2 m/s. Assuming water density of ρ-1000 kg/m 3 and viscosity μ-10-3 N s'm2, calculate the velocity at the center of the pipe, the shear τ at the wall, and the Reynolds number. Assuming laminar flow, calculate friction coefficient C and pressure drop dp/dx.

  • 4. An incompressible fluid with viscosity u and density p was contained in pipe of length...

    4. An incompressible fluid with viscosity u and density p was contained in pipe of length L and radius R. Initially the fluid is in rest. At t=0, a pressure difference of AP is applied across the pipe length which induces the fluid flow in axial direction (V2) Only varies with time (t) and pipe radius (r). There is no effect of gravity. To describe the fluid flow characteristics, after the pressure gradient is applied, answer the following questions: a)...

  • please solve (va20) for me thanks!! :) V VISCOUS FLOWS Page 38 nar flow between two infinite plates a distance h apart driven by a pressure gra- Va20. For lami dient, the velocity profile is [constan...

    please solve (va20) for me thanks!! :) V VISCOUS FLOWS Page 38 nar flow between two infinite plates a distance h apart driven by a pressure gra- Va20. For lami dient, the velocity profile is [constant] [linear] [parabolic] [hyperbolic] [elliptic] [error func- tion], and the flow rate Q is proportional to h to the power is driven by the top plate moving at a speed U in the absence of any pressure gradient, the velocity profile is [constant] linearl Iparabolic]...

  • Water is in steady fully developed laminar flow between two horizontal, very wide (W) and long...

    Water is in steady fully developed laminar flow between two horizontal, very wide (W) and long (L) parallel surfaces separated by a distance b. The bottom surface at y 0 moves in the negative x-direction at a speed vo while the top surface at y b is stationary. In addition, a constant pressure gradient dP/dx is acting on the liquid in the x-direction. (a) Write the simplified form of the Navier-Stokes equation and the appropriate boundary conditions. (b) Derive an...

  • Ignore question [1], just need the problem description from it. [1] Water flowing in a pipe...

    Ignore question [1], just need the problem description from it. [1] Water flowing in a pipe is determined to be moving at the velocities given in the diagram below. The higher level is 3 meters above the lower one and the pressure in the lower portion is measured to be 200 kPa. Determine the pressure inside the upper pipe Treat the water as an ideal fluid obeying Bernoulli's equation. Consider the path connecting poin in the lower pipe with point...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT