Question

Part 6 Question 1 (3 marks) The power cycle shown below operates at steady state. Air (constant k = 1.4) enters the compresso

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution Assumption: Ais is considered as ideal you. compression and Expansion is i sentropic Process on TS- diagram 3 TA - G

Add a comment
Know the answer?
Add Answer to:
Part 6 Question 1 (3 marks) The power cycle shown below operates at steady state. Air...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle...

    1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle and a simple Rankine cycle for the water vapor cycle. Atmospheric air enters the compressor at a rate of 88.2 lbm / s, at 14.7 psia and 59 ° F, and the maximum gas cycle temperature is 1,742 ° F. The pressure ratio in the compressor is 7. The isentropic efficiency of both the compressor and the turbine is 80%. Gas exits the heat...

  • 2. Consider a combined gas steam power cycle. The gas cycle is a simple Brayton cycle...

    2. Consider a combined gas steam power cycle. The gas cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters at 9.8 kg / s at the compressor at 15 ° C and 100 kPa, and at the gas turbine at 950 ° C. The steam cycle is a Rankine cycle with overheating between the pressure limits of 6 MPa and 10 kPa. The water vapor is heated in the heat exchanger at a rate...

  • Problem4 (a) (40 points) A combined gas-steam powe cycles. The ideal Brayton and Rankine plant operates on Rankine cycle has a reheater. The Brayton cycle operates on a gas- of the gas-turbine c...

    Problem4 (a) (40 points) A combined gas-steam powe cycles. The ideal Brayton and Rankine plant operates on Rankine cycle has a reheater. The Brayton cycle operates on a gas- of the gas-turbine cycle 1400 K The 15MPa to ercooling, reheating, and regeneration cycle. The pressure ratio 300 K for compressor stages is do Air enters compressors a combustion gases leaving the lower pressure gas turbine are used to heat the steam at C in a heat exchanger. The combustion gases...

  • A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a...

    A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a simple Rankine cycle for the bottoming cycle. Atmospheric air enters the compressor at 101 kPa and 20 °C, and the maximum gas cycle temperature is 1100 °C. The compressor pressure ratio is 8. The gas stream leaves the heat exchanger at the saturation temperature of the steam flowing through the heat exchanger. Steam enters the heat exchanger at a pressure of 6 MPa and...

  • 3. Consider a dual-loop cycle utilizing air as the working fluid is shown schematically in the fi...

    3. Consider a dual-loop cycle utilizing air as the working fluid is shown schematically in the figure below. Air enters the compressor at 1 bar and 4°C and is compressed to 3 bar. Part of the air exiting the compressor enters the refrigeration cycle and remaining enters the power cycle. The air supplied to the refrigeration cycle from the compressor is cooled to the 55°C at constant pressure in a heat exchanger and then expands in a turbine to 1...

  • 2. In an air - standard Broyton cycle, the air enters the compressor at 0.1 MPa,...

    2. In an air - standard Broyton cycle, the air enters the compressor at 0.1 MPa, 20 °C. The pressure leaving the compressor is 0.6MPO, and the maximum temperature in the cycle is 950°C. Determine of the prassure and temperatura at each point in the cycle. by the compressor work, turbine work, and cycle efficiency. (50 points)

  • An air-standard Brayton cycle includes a regenerator which is shown in the below figure. The air...

    An air-standard Brayton cycle includes a regenerator which is shown in the below figure. The air enters the compressor at 100 kPa, 20℃. The pressure ratio across the compressor is 9:1. The highest temperature in the cycle is 1100℃, and the flow rate of the air is 10 kg/s. The regenerator operates at effectiveness 80 percent. Both the efficiencies of the turbine and the compressor are 85%. Do not use Table A-22. Assuming constant specific heat ( cp = 1.004...

  • A combined gas–steam power plant has been designed with a net power output of 450 MW....

    A combined gas–steam power plant has been designed with a net power output of 450 MW. The pressure ratio of the gas-turbine cycle is 14. Air enters the compressor at 300 K and the turbine at 1400 K. The combustion gases leaving the gas turbine are used to heat the steam at 8 MPa to 400 C in a heat exchanger. The combustion gases leave the heat exchanger at 460 K. An open feedwater heater incorporated with the steam cycle...

  • Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam...

    Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam enters both the high- and low- pressure turbines at 600oC. The maximum and minimum pressures of the cycle are 20 MPa and 20 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The...

  • An adiabatic turbine operates at steady state. Air enters the turbine at a pressure and temperature...

    An adiabatic turbine operates at steady state. Air enters the turbine at a pressure and temperature of 800 kPa and 1100 K, respectively, and exits at 100 kPa. A temperature sensor at the turbine exit indicates that the exit air temperature is 700 K. Kinetic and potential energy effects are negligible, and the air can be treated as an ideal gas. Determine if the exit temperature reading can be correct. If yes, determine the turbine isentropic efficiency.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT