Question

A heat exchanger is to be designed for the following specifications:         Hot gas temperature, 1145...

  1. A heat exchanger is to be designed for the following specifications:

        Hot gas temperature, 1145 oC

        Cold gas temperature, 45 oC

        Unit surface conductance on the hot side, 230 W/m2-K

        Unit surface conductance on the cold side, 290 W/m2-K

        Thermal conductivity of the metal wall, 115 W/m-K

Find the maximum thickness of the metal wall between the hot gas and cold gas so that the    maximum temperature of the wall does not exceed 545 oC.

1 0
Add a comment Improve this question Transcribed image text
Answer #1

T Tz hcold = 2.90 W/m²K hhot = 230 w/m kl That = 1145°c Tcold - 45°C - Th=545c K=115 W/m-k For the convection heat transfer

Add a comment
Know the answer?
Add Answer to:
A heat exchanger is to be designed for the following specifications:         Hot gas temperature, 1145...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The wall of a heat exchanger separates hot water at Tin 90 C with h." 80 w/m2.K from cold water a...

    The wall of a heat exchanger separates hot water at Tin 90 C with h." 80 w/m2.K from cold water at Tout 10 C with h,ut 60 W/m2.K. The thermal conductivity of the heat exchanger is 180 W/m.K To extend the heat transfer area, two-dimensional ridges are machined on the cold side of the wall. This geometry causes non-uniform thermal stresses, which may become critical for crack initiation along the lines between two ridges. To predict thermal stresses, the temperature...

  • The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of...

    The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m * 3.0 m) with a heat transfer coefficient of 255 W/m2K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m long and the heat transfer...

  • Question 11 (15 points) The wall of a liquid-to-gas heat exchanger has a surface area on...

    Question 11 (15 points) The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m * 3.0 m) with a heat transfer coefficient of 255 W/m2 K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m...

  • The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of...

    The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m 3.0 m) with a heat transfer coefficient of 255 W/m2K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m long and the heat transfer coefficient...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • Carbon dioxide (CO2) is used for the gas cooled reactor in shell and tube heat exchanger...

    Carbon dioxide (CO2) is used for the gas cooled reactor in shell and tube heat exchanger type steam generator (shown in Figure 2). 90000 kg/h entered to the exchanger under pressure and temperature of 4 bar and 500 OC respectively. The steam saturation temperature is 250 oC when the carbon dioxide leave the generator at 3300C. Presume the formed steam is saturated and dry. Using 25 mm inner diameter and 2 mm wall thickness, a copper tube is designed for...

  • Problem 4: Consider the heat exchanger design illustrated. Hot air flows at speed of r0.6 m/s thr...

    Problem 4: Consider the heat exchanger design illustrated. Hot air flows at speed of r0.6 m/s through the center pipe. The center pipe has an outer diameter of D=7 cm and length 4-2 m Cold water flows at 20-25 cm3/s through a smaller helical pipe having an outer diameter d = 1 cm and wall thickness of mm. The helical pipe is wrapped around the center pipe to form a heat exchanger. The center pipe has a thermal conductivity of...

  • e. skisser temperaturpronien u varmt og kaldt vann som en funksjon av rørlengden Engelsk tekst A...

    e. skisser temperaturpronien u varmt og kaldt vann som en funksjon av rørlengden Engelsk tekst A well-insulated double pipe heat exchanger (counter flow arrangement) is used to exchange heat between hot water and cold water. The tube side of the heat exchanger has an internal diameter of 0.05 m and wall thickness of 0.01m. The shell side of the heat exchanger has an internal diameter of 0.1 m. The hot water flows in the tube side with mass flow rates...

  • Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and...

    Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and is cooled by a cold water stream of flow rate 25 kg/min. The inlet temperatures of hot and cold water streams are 70 oC and 25 oC, respectively. The outlet temperature of the hot water is expected to be 50 oC. The individual convective heat transfer coefficient on both sides of the heat transfer area is 600 W/m2 .K. Take the specific heat for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT