Question
Help on on the rest
Air Bows throagh a coeverging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables Note: The specific beat ratio and gas constant for air are given as k-14 and R-0287 kJkg-K respectively Inlet Temperature: TI (K) 367 Inlet pressure: Pl (Pa)-469 Inlet Velocity: VI (m/s)-96 Area at norzle inlet: Al (cmA2) 8.59 Throat area: A (em*2)-3.76 Area at diffuser exit: A (em2) 647 a) Determine the Mach number at the inlet. Your Answer- Your Answer 3 Your Answer 48 834 Your Answer Your Answer Your Answer Your Answer Corect! Exact Answer, 02500 4. 9AE04 Correct! Exact Amswer 371 591AE+00 Correct! Exact Answere 489 8424400 Incorroct. b) Determine the stagnation temperature (K) at the inlet the stagnation pressure (xPa) at the inlet ) Determine the theoretical throat area (emA2) for sonic fow (A) e) Determine the Mach number at the throat. D Determine the temperature (K) at the throat E) Determine the velocity (m/s) at the throat h) Determine the pressure Q Pa) at the throat i) Determine the mass tow rate (kgh) through j) Determine the Mach number at the exit. k) Determine the temperature (K) at the exit D Determine the velocity (m/s) at tdhe exit Your Answer Your Answer Your Answer Your Answer Your Answer a noule
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Help on on the rest Air Bows throagh a coeverging-diverging nozzle/diffuser. Assuming isentropic flow, air as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. So equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) = 8.81...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k-14 and R-0.287 LJ/kg-K respectively, --Given Values Inlet Temperature: TI (K) - 339 Inlet pressure: P1 (kPa)=618 Inlet Velocity: VI (m/s) = 68 Area at nozzle inlet: Al (em'2)7.77 Throat area: A...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, nir as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, nir as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables Note: The specific heat ratio and gas constant for air are given as k-14 and R-0.287 kJ/kg-K respectively, Give Values Inlet Temperature: TI(K) - 339 Inlet pressure: P1 (kPa)-618 Inlet Velocity: V1 (m/s) - 68 Area at nozzle inlet: Al (cm'2) - 7.77 Throat area:...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 338 Inlet pressure: P1 (kPa) = 555 Inlet Velocity: V1 (m/s) = 121 Area at inlet (cm^2) = 9 Mach number at the exit = 1.56 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 360 Inlet pressure: P1 (kPa) = 583 Inlet Velocity: V1 (m/s) = 105 Area at inlet (cm^2) = 8.2 Mach number at the exit = 1.86 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K)= 366 Inlet pressure: P1 (kPa) = 496 Inlet Velocity: V1 (m/s) = 99 Area at inlet (cm^2) = 8.7 Mach number at the exit = 1.7 a) Determine the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT