Question

You are given an unstable plant with a transfer function P(s) = Tote -1 R(S) Y(8) 11+ C(8) P(s) You are to design a proportio

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
You are given an unstable plant with a transfer function P(s) = Tote -1 R(S) Y(8)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 5. A milling machine has the following open-loop transfer function: (s 1)(s+3) Draw a block diagram describing a negati...

    5. A milling machine has the following open-loop transfer function: (s 1)(s+3) Draw a block diagram describing a negative feedback system that includes a plant a) with transfer function of Gi(s) and a cascade proportional controller with a gain of K. b) Write the closed-loop transfer function for such a negative feedback system c The plant has poles that are solutions to P(s) 0 and zeros that are the solutions to Z(s)-0. Write an equation involving K, P(s) and Z(s)...

  • Problem 5: Suppose that you are to design a unity gain feedback controller for a first order plant. The plant...

    Problem 5: Suppose that you are to design a unity gain feedback controller for a first order plant. The plant and controller respectively take the form ,s+ p where K> 0, p. z are parameters to be specified. (a) Using root-locus methods, specify some p and z for which it is possible to make the closed-loop system strictly stable. Include a sketch of the closed-loop root locus, as well as the corresponding range of gains K for which the system...

  • SOLVE USING MATLAB A servomechanism position control has the plant transfer function 10 s(s +1) (s 10) You are to desig...

    SOLVE USING MATLAB A servomechanism position control has the plant transfer function 10 s(s +1) (s 10) You are to design a series compensation transfer function D(s) in the unity feedback configuration to meet the following closed-loop specifications: . The response to a reference step input is to have no more than 16% overshoot. . The response to a reference step input is to have a rise time of no more than 0.4 sec. The steady-state error to a unit...

  • Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5...

    Question 6 The open-loop transfer function G(s) of a control system is given as G(8)- s(s+2)(s +5) A proportional controller is used to control the system as shown in Figure 6 below: Y(s) R(s) + G(s) Figure 6: A control system with a proportional controller a) Assume Hp(s) is a proportional controller with the transfer function H,(s) kp. Determine, using the Routh-Hurwitz Stability Criterion, the value of kp for which the closed-loop system in Figure 6 is marginally stable. (6...

  • Give me the explanation plz 2. a) A digital controller implementation for a feedback system is shown in Figure 2 where the sampling period is T0.1 second. The plant transfer function is s +10 P(s) =...

    Give me the explanation plz 2. a) A digital controller implementation for a feedback system is shown in Figure 2 where the sampling period is T0.1 second. The plant transfer function is s +10 P(s) = and the feedback controller, K, is a simple proportional gain (K>0).v R(z) E(z) S+10 Controller ZOH Plant Figure 2* i)o In order to directly design a digital controller in the z-domain, the plant P(s) 6. needs to be discretised as P(z). Find the ZOH...

  • A transfer function is given by G(s) H (s) = s(s+1 ) (s + 8 (a)...

    A transfer function is given by G(s) H (s) = s(s+1 ) (s + 8 (a) Design a Lead Compensator or PD controller such that the closed loop has the following specifications: Percent Overshoot (PO) 16 % Rise time 0.4 sec-2.16 ? + 0.6 (b) Determine the velocity error constant (Kv) of the uncompensated and compensated systems.

  • Consider the feedback sy PID COntroller Plant R(S) Y(s) the closed-loop transfer function T(s) = Y...

    Consider the feedback sy PID COntroller Plant R(S) Y(s) the closed-loop transfer function T(s) = Y controller (Kp Find er p 1, Ks K ) and show that the system is marginally stable with two imaginary roots. (s)/R(s) with no sabl thosed-loop transfer function T(s) Y (S/R(s) with the (three- term) PID controller added to stabilize the system. suming that Kd 4 and K, -100, find the values (range) of Kp that will stabilize the system.

  • 1. Consider the following feedback control system Controller Process 1 G(s) R(s) Y(s) $2+5s+6 Below are...

    1. Consider the following feedback control system Controller Process 1 G(s) R(s) Y(s) $2+5s+6 Below are two potential controllers for this system: 1) Ge(s) K (Proportional controller) 2) Ge(s) K(1 1/s) (Proportional-integral controller) The design specifications are t 3.2s and P. 0. 10% for a unit step input (a) Determine the area on the S-plane where the dominant closed loop poles must be located such that the design requirements are satisfied. (b) Sketch the root locus with each of the...

  • 1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be...

    1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be designed to meet the following requirements: (1) the steady-state error for a unit ramp input equals to 0.1 and (2) the closed-loop poles will be located at -1 + j1. Find K, a, and B in order to meet the specifications. (12 points) 2. Given a unity feedback system with its forward transfer function G(s) shown below: s" (s +a) Find the values of...

  • Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) -...

    Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) - under the control of a lead compensator (a) Using the Routh's stability criterion, determine the conditions on k and a so that the closed-loop system is stable, and sketch the region on the (k, a)- plane where the conditions are satisfied. Hence, determine the minimum value of k for the lead compensator to be a feasible stabilizing controller. (10 marks) (b) Suppose α-2. Given...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT