Question

SOLVE USING MATLAB

A servomechanism position control has the plant transfer function 10 s(s +1) (s 10) You are to design a series compensation t

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

1o e haue -3.023 ± S. 236 J S 236 180 - 93 -3 023 236 -1,023Tne 4己 S, 23 ne negu k (122 04 O XpC) (S p) tro pole mut beat002 So StO 002)

d) matlab:

clc;

clear all;

close all;

s=tf('s');

g=10/(s*(s+1)*(s+10));

gclead=104*(s+1.721)/(s+21.2787);

gclag=(s+0.1)/(s+0.002);

rlocus(g*gclead*gclag)

File Edit View Insert Tools Desktop Window Help Root Locus 20 20 80 60 20 40 Real Axis (seconds )

e)

clc;

clear all;

close all;

s=tf('s');

g=10/(s*(s+1)*(s+10));

gclead=104*(s+1.721)/(s+21.2787);

gclag=(s+0.1)/(s+0.002);

step(feedback(g*gclead*gclag,1))

File Edit View Insert Tools Desktop Window Help Step Response Peak ampitude: 1.29 Overs oot (%): 28.9 At time (seconds): 0.62

Add a comment
Know the answer?
Add Answer to:
SOLVE USING MATLAB A servomechanism position control has the plant transfer function 10 s(s +1) (s 10) You are to desig...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Control and System Matlab and Simulink

    Design of Lead Compensator With Matlab...G(s) = 9/(s^2+0.5s) and Gc(s) = 1Transfer Function, maximum overshoot...DESIGN of a LEAD COMPENSATOR with MATLABFor the figure below, G(s)=9 / s(s+0.5)a) For the compensator Gc(s)=1 Obtain- Transfer function,- Maximum overshoot and settling time for unit-step input- Drawi. unit step-response curve in MATLAB.ii. unit ramp-response curve in MATLAB.iii. Root- locus curve in MATLAB- Obtain steady state error for unit-ramp inputb) Design a lead compensator Gc(s) to shift the poles at new locations of s₁=-4+j4 and...

  • A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating wi...

    A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the steady-state error for a unit step input b) Design a PI control to reduce the steady-state error to zero without affecting its transient response c) Evaluate the steady-state error and overshoot for a unit step input to your compensated system A unity feedback system with the forward transfer function G(s) is operating with...

  • Q.4 A position control system is shown in Figure Q4. Assume that K(s) = K, the plant 50 s(0.2s +1) transfer function is given by G(s) s02s y(t) r(t) Figure Q4: Feedback control system. (a) Design a l...

    Q.4 A position control system is shown in Figure Q4. Assume that K(s) = K, the plant 50 s(0.2s +1) transfer function is given by G(s) s02s y(t) r(t) Figure Q4: Feedback control system. (a) Design a lead compensator so that the closed-loop system satisfies the following specifications (i) The steady-state error to a unit-ramp input is less than 1/200 (ii) The unit-step response has an overshoot of less than 16% Ts +1 Hint: Compensator, Dc(s)=aTs+ 1, wm-T (18 marks)...

  • System dynamics and control course. Use only “MATLAB “to solve this. Need a pro to help Let a system have plant transfer function (00.2) s3 +22s 156s+232 Design a PID controller such that the cl...

    System dynamics and control course. Use only “MATLAB “to solve this. Need a pro to help Let a system have plant transfer function (00.2) s3 +22s 156s+232 Design a PID controller such that the closed-loop rise time is less than 0.5 seconds, the overshoot is less than 10%, and the steady-state error is zero for a step command. Let a system have plant transfer function (00.2) s3 +22s 156s+232 Design a PID controller such that the closed-loop rise time is...

  • Consider a system modelled by means of the following transfer function 10 G(s) s(s +1)(s +10)...

    Consider a system modelled by means of the following transfer function 10 G(s) s(s +1)(s +10) Given the standar negative feedback control structure, and the Bode plot of G(s): 1. Obtain (if possible) a lead compensator controller (C(s) Kc1+ts) that satisfies that the corresponding steady state error with respect to the ramp input is and that the overshoot is not greater than 15 per cent 2. Obtain (if possible) a lead compensator that satisfies that the correspond- ing steady state...

  • A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with ...

    A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G (s) =...

  • A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-...

    A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input; b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G)2)(s +5) is operating with...

  • The transfer function of a position control system, with load angular position as an output and...

    The transfer function of a position control system, with load angular position as an output and motor armature voltage, is given as G(s) : s(s + 10) For this system design the following controllers 1. Proportional controller to obtain { = 0.7 2. PD controller to obtain { = 0.7 and 2% steady-state error due to a ramp input. 3. PI controller to have a dominant pair of poles with { = 0.7 , wn = 4 rad/sec and zero...

  • Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s...

    Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s)- s(s+3(s6) Design a lag compensation to meet the following specifications The step response settling time is to be less than 5 sec. . The step response overshoot is to be less than 17% . The steady-state error to a unit ramp input must not exceed 10%. Dynamic specifications (overshoot and settling time) can be met using proportional feedback, but a lag compensator is needed...

  • Problem 1: (20 points) Assume that a standard unity feedback system has the open- loop plant...

    Problem 1: (20 points) Assume that a standard unity feedback system has the open- loop plant transfer function: G(S) s(s+3)(s +6) Use Root Locus Methods to design an analog compensator to meet the following specifications: • The step response settling time is less than 5 seconds. • The step response overshoot is less than 17%. • The steady-state error to a unit-ramp input is less than 10%.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT