Question

HotLW Problem: Giving the engineering stress - engineering strain carve for an aluminum alloy, Calalate: 400FTTTTTTTTTT 10 ps
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Using Stress strain curve

Please go through photograph for

Required Answers with explanation,

Given. - d do = 11 mm le = 50 mm from stress strain cune 0 Parcant elongation at fracture ( % elongation) - change in length

Using Curre ES P= 25 KN 800 25x10w x Toxio E = 30x100 N IX (11810 32 x Boxior Al = 0.0438 m = 43.8 mm d = ? at 6=350 MPa at 6

Add a comment
Know the answer?
Add Answer to:
HotLW Problem: Giving the engineering stress - engineering strain carve for an aluminum alloy, Calalate: 400FTTTTTTTTTT...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • manifactoring processes 1) Sketch Engineering stress vs. Engineering strain curve and True stress vs. true strain...

    manifactoring processes 1) Sketch Engineering stress vs. Engineering strain curve and True stress vs. true strain curve from one uniaxial tension test for an engineering metals that shows power law strain hardening (e.g. aluminum or steel), within the same plot, and identify, from the curves, the material property parameters of: Yield strength (0.2% offset) Uniform engineering strain ultimate tensile strength (eng.) true stress and true strain at the onset of necking K and n from power-law fitting (the range of...

  • References Tensile strength 450 MPa (65,000 psi) Strain = 0 Stress = 0 MPA Stress =...

    References Tensile strength 450 MPa (65,000 psi) Strain = 0 Stress = 0 MPA Stress = 0 psi 500 1 Strain = 0 Stress = 0 MPA Stress = 0 psi 103 psi 40 MPa 300 Yield strength 250 MPa (36,000 psi) 200 - 30 Stress (MPa) 2001 Stress (10 psi) 100% okuloobs 0.10 0.20 0.30 Strain References Brinell hardness number = 0 BHN Rockwell hardness = ... Rockwell hardness Tensile strength = 0 MPA Tensile strength = 0 ksi...

  • ive already gotten 2 wrong answers this is my last attempt please be correct!!!!!!!!!!!!!! Incorrect Consider the brass alloy the stress-strain behavior of which is shown in the Animated Fioure...

    ive already gotten 2 wrong answers this is my last attempt please be correct!!!!!!!!!!!!!! Incorrect Consider the brass alloy the stress-strain behavior of which is shown in the Animated Fioure 2.12. A cylindrical specimen of this alloy 15 mm in diameter and 214 mm long is to be pulled in tension Calculate the force necessary to cause 0.00788 mm reduction in diameter. Assume a value of 0.35 for Poisson's ratio. 26507.1 the tolerance is +/-2% Click if you would like...

  • Problem 7.23 Your answer is partially correct. Try again. Consider the brass alloy for which the ...

    Can someone help me with this materials problem? Problem 7.23 Your answer is partially correct. Try again. Consider the brass alloy for which the stress-strain behavior is shown in the Animated Figure 7.12. A cylindrical specimen of this material 10.1 mm (0.3976 in.) in diameter and 98.8 mm (3.890 in.) long is pulled in tension with a force of 10200 N (2293 lbr). If it ls known that this alloy has a value for Polsson's ratio of 0.35, compute (a)...

  • 2) Using the stress-strain curve for a steel alloy shown in the following figure answer the...

    2) Using the stress-strain curve for a steel alloy shown in the following figure answer the following questions: 600 500 400 500 400 300 300 200 200 100 100 0.000 0.002 0.006 0.004 Strain 0.00 0,04 0.08 0.12 0.16 0.20 Using the same steel alloy, consider a cylindrical specimen 15 mm in diameter pulled in tension, if a load of 85,000 N is applied: h) Calculate the approximate ductility in percent elongation, (consider the final elongation as the elongation at...

  • Calculate the modulus of resilience for the material having the stress-strain behavior shown in the Animated...

    Calculate the modulus of resilience for the material having the stress-strain behavior shown in the Animated Figure 6.12. Tensile strength 450 MPa (65,000 psi) Strain 0 Stress 0 MPA Stress 0 psi 500 70 Strain0 Stress 0 MPA Stress 0 psi 60 400 103 ps 50 MPa 40 Yield strength 250 MPa (36,000 psi) 300 40 0 200 30 200 30 20 100 20 10 100 10 0.10 0.20 0.30 0.40 Strain

  • 1.Below are stress-strain curves for 5 steels. (a) annealed low carbon steel, (b) a steel alloy...

    1.Below are stress-strain curves for 5 steels. (a) annealed low carbon steel, (b) a steel alloy which has a DBTT of +50°C (c) 304 stainless steel (d) nearly pure coarse grained Fe Identify the modulus, yield stress, tensile strength, ductility, and toughness. Identify the amount of elastic strain at yield stress, tensile strength, point right before fracture, point right after fracture. 2000 -Low C steel, 1800 steel alloy, DBTT +50C 304 stainless pure Fe 1600 1400 1200 t 1000 800...

  • (30 points) From the stress-strain chart for a unknown material determine thoe following 400 a) The...

    (30 points) From the stress-strain chart for a unknown material determine thoe following 400 a) The modulus of elasticity b) The yield strength at a strain offset of 0.002 c) Tensile strength d) The Ductility (percentage of 300 200 elongation, %EL) e) The Modulus of resilience f) Strain at 350 Mpa stress g) Strain at 150 Mpa stress 200 100 100 0.005 0.30 0.40 0.10 trein 0.20

  • 1-Determine the % elongation, yield stress and ultimate tensile strength of the material tested above 2-Calculate...

    1-Determine the % elongation, yield stress and ultimate tensile strength of the material tested above 2-Calculate the elastic modulus of the material tested above 3-If a 200mm cylindrical rod of the material tested above, with radius 20mm, was subjected to a tensile load of 200kN, what would the length be? 4-An underground wastewater steel pipe with 2mm walls carries an ammonia solution of 40 g/m3. The pipe is in contact with groundwater (assume 0 g/m3 ammonia). Determine the diffusion rate...

  • 5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify...

    5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify the mechanical properties of the material. (4 marks) II. Identify the following and label them in the graph. (12 marks) • Young's modulus Yield strength Elongation Ultimate tensile strength THEORETICAL BACKGROUND Equations: Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL) d? E = Sy Ey Sr Pu А %EL Extension at fracture Gauge Length Where: A: Cross- Sectional Area...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT