Question

2 A metal tube with dimensions as shown below was subjected to an axial tensile load of 175 N. If the youngs modulus the met

2cm 175N 475 =--== 30cm - 75mm

0 0
Add a comment Improve this question Transcribed image text
Answer #1

So Given, Axial tensile load, p = 175N Youngs modules of the metal, e - 25,0compa 2cm 175N 175NE - - k 30cm - 75mm Area of cil Total arial elongation, SL axial Stain, - SL Sl= Sil - 2,592 x 10 x 300 = 7.778x103 mmThank you....please rate my solution

Add a comment
Know the answer?
Add Answer to:
2 A metal tube with dimensions as shown below was subjected to an axial tensile load...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please provide me clear handwriting Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d...

    Please provide me clear handwriting Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d = 7.42, lo = 40mm (4 marks) Load, KN Extension, mm Stress, MPa Strain 0 0 10 0.05 17 0.08 25 0.11 30 0.14 34 0.20 37.5 0.40 38.5 0.60 36 0.90 Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL) A = T d2 4 E = Sy Ey ST = PU A %EL = Extension at fracture Gauge...

  • 5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify...

    5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify the mechanical properties of the material. (4 marks) II. Identify the following and label them in the graph. (12 marks) • Young's modulus Yield strength Elongation Ultimate tensile strength THEORETICAL BACKGROUND Equations: Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL) d? E = Sy Ey Sr Pu А %EL Extension at fracture Gauge Length Where: A: Cross- Sectional Area...

  • Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d= 7.42, lo = 40mm (4...

    Table 1: TENSILE TEST RESULTS OF A METAL SAMPLE with d= 7.42, lo = 40mm (4 marks) Load, KN Extension, mm Stress, MPa Strain 0 0 0 0 # 10 0.05 0.0002312 0.00125 17 0.08 0.0003931 0.002 4 25 0.11 0.0005781 0.00275 5 0.14 0.0006937 0.00350 30 34 0.20 0.005 37.5 0.40 0.01 0.0007862 8 0.0008672 2 0.0008903 5 0.0008325 3 38.5 0.60 0.015 36 0.90 0.0225 Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL)...

  • Problem 04: A cylindrical metal specimen 15.0 mm in diameter and 150 mm long is to be subjected to a tensile stress of 50 MPa

     Problem 04: A cylindrical metal specimen 15.0 mm in diameter and 150 mm long is to be subjected to a tensile stress of 50 MPa; at this stress level the resulting deformation will be totally elastic. (a) If the elongation must be less than 0.072 mm, which of the metals in following Table are suitable candidates? Why? (b) If, in addition, the maximum permissible diameter decrease is 2.3 x 10-3 mm when the tensile stress of 50 MPa is applied,...

  • a solid circular shaft of radius a is subjected to the combined axial load P, bending moment M, and torsional moment T shown. Assume that M = Pa/2 and T = Pa/2. The axial load is constant while the m...

    a solid circular shaft of radius a is subjected to the combined axial load P, bending moment M, and torsional moment T shown. Assume that M = Pa/2 and T = Pa/2. The axial load is constant while the moments M and T are completely reversed cyclic (recall, completely reversed cyclic means having the same amplitude in positive and negative sense in a cycle). The material of the shaft has the yield stress of 300 MPa and endurance limit of...

  • 1-Determine the % elongation, yield stress and ultimate tensile strength of the material tested above 2-Calculate...

    1-Determine the % elongation, yield stress and ultimate tensile strength of the material tested above 2-Calculate the elastic modulus of the material tested above 3-If a 200mm cylindrical rod of the material tested above, with radius 20mm, was subjected to a tensile load of 200kN, what would the length be? 4-An underground wastewater steel pipe with 2mm walls carries an ammonia solution of 40 g/m3. The pipe is in contact with groundwater (assume 0 g/m3 ammonia). Determine the diffusion rate...

  • 6. The data in the table below was obtained from room temperature tensile tests of two Mg alloy s...

    6. The data in the table below was obtained from room temperature tensile tests of two Mg alloy samples (A and B): Determine: elastic modulus, yield strength, UTS, and total elongation of these samples. Calculate the strain hardening exponent (n). Sa 35 120 158 333 203.333 228 333 245 0.33 0.63 0.83 0.28 0.4 0.61 0.85 1.75 3.75 5.16 7.64 0.78 11.25 11.9 1225 12.25 12.25 1225 123 203.333 235 260 83.333 295 305 311.66 18.333 321.667 325 1.9 263.333...

  • Question 3 128 Marks 2 rectangular beam shown in the figure is subjected to a fluctuating axial f...

    please draw and solve show every thing details “” Question 3 128 Marks 2 rectangular beam shown in the figure is subjected to a fluctuating axial force. It fluctuates between 5 kN and 15 kN keeping its direction. The beam is to be machined to the dimensions shown in the figure with a transvers hole of diameter d-14 mm/ Material of the beam is AISI 1040 CD steel (S-590 stress concentration factor as 2.2. K Pa, Sy 490 MPa). Take...

  • The beam shown below is subjected to a uniform load of 2 kips/ft, two concentrated transverse...

    The beam shown below is subjected to a uniform load of 2 kips/ft, two concentrated transverse loads of 12 kips, and 6 kips, and a tensile axial force of 10 kips. a) Draw the shear and moment diagrams. (8) b) Find the stresses at B. (10) c) Find the maximum shearing stress in the beam. (10) 12 kips 2 k/ft 6 kips 10 kips 4 41 8' A B D E 12" 2" 2 14" B 24 16"

  • Questions 5-8 A steel frame shown below is subjected to combined uniformly distributed gravity load (w...

    Questions 5-8 A steel frame shown below is subjected to combined uniformly distributed gravity load (w 2 kips/f) and a horizontal earthquake load of H-10 kips Both the beams and the columns are made of W12x120 section having a yield strength of F 45 ksi. The Young's modulus of steel s E-29,000 ksi. The distributed load w is used to simulate the self-weight of the beam, the load transferred from roof slab, as well addition superimposed dead loads. The self-weigh...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT