Question

(10%) Problem 4: A mass m= 3.6 kg is at the end of a horizontal spring of spring constant k=185 N/m on a frictionless horizon

0 0
Add a comment Improve this question Transcribed image text
Answer #1

M=3.6 kg ; K=185 N/M ; A=5.5cm=0.055m (a.) w = 5km (b) w ho = 7.17 rads (6) T= 20 (d.) T= 2A = 0.88 see. © Vinax = W²A 7.17

Add a comment
Know the answer?
Add Answer to:
(10%) Problem 4: A mass m= 3.6 kg is at the end of a horizontal spring...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (13%) Problem 3: A mass m= 2.2 kg is at the end of a horizontal spring...

    (13%) Problem 3: A mass m= 2.2 kg is at the end of a horizontal spring of spring constant k = 385 N/m on a frictionless surface. The block is pulled, stretching the spring a distance A = 6.5 cm from equilibrium, and released from rest. $ 17% Part (a) Write an equation for the angular frequency w of the oscillation. Grade Summary Deductions Potential 100% 7 8 4 5 1 2 0 V O BACKSPACE 9 6 3 ....

  • (33%) Problem 1: A mass m = 1.2 kg is at the end of a horizontal...

    (33%) Problem 1: A mass m = 1.2 kg is at the end of a horizontal spring of spring constant k = 440 N/m on a frictionless horizontal surface. The block is pulled, stretching the spring a distance A-3.5 cm from equilibrium, and released from rest ト 17% Part (a) Write an equation for the angular frequency ω of the oscillation Grade Summary Deductions Potential 100% 0% Submissions Attempts remaining: 7 % per attempt) detailed view 0 Submit Hint Hints:...

  • Please answer A through F. Thank you! (33%) Problem 3: A mass m 4.6 kg is...

    Please answer A through F. Thank you! (33%) Problem 3: A mass m 4.6 kg is at the end of a horizontal spring of spring constant k = 375 N/m on a frictionless horizontal surface. The block is pulled, stretching the spring a distance A = 1.5 cm from equilibrium, and released from rest -Δ 17% Part (a) Write an equation for the angular frequency ω of the oscillation Grade Sıu Deductio Potential ω= Submissi Attempts %per a detailedv 0...

  • amework 1 Begin Date: 1/16/2019 12 01 00 AM (1 Due Date: 1/27/20 19 11 S9...

    amework 1 Begin Date: 1/16/2019 12 01 00 AM (1 Due Date: 1/27/20 19 11 S9 00 PM End Dat 1756) Problem 2: A mass m- 11kg is at the end of a hor zontal prug ofspr ng constant k. 21S Nano af surface. The block is palled, stretching the spring a distance A 5.5 cm from equilibrium, and released from rest taleis zontal ヅ17% Part (a) Write an equation for the angular fequency ω ofthe oscillation ψ 17% Part...

  • need help with all parts O Virtual UTAH HW 15: Fluid HW 16 Oscill How to...

    need help with all parts O Virtual UTAH HW 15: Fluid HW 16 Oscill How to Trade The Bxpel X C Search Textb C in 0.715 S.A C in 0.810 5. AI L A mass m1 9 asm 42sc theexpertta.com/common/Take TutorialAssignments (129) Problem 5: A mass - 1.8 kg is at the end of a horizontal spring of spring constant k-125 N/m on a frictionless horizontal surface. The block is pulled, stretching the spring a distance 4 - 7.5 cm...

  • Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of s...

    Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of spring constant 2500 N/m as shown in the Figure below. The amplitude or maximum displacement X max is 7m. Calculate O a) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x...

  • A block of mass m is 650 g which is tied to a spring whose spring...

    A block of mass m is 650 g which is tied to a spring whose spring constant is 62 N/m. The block is pulled a distance x=11 cm from its equilibrium position at x=0 on a frictionless surface and released from rest at t=0 s. What are the angular frequency, the frequency, and the period of the resulting motion? What is the amplitude of the oscillation? What is the maximum speed Vm of the oscillating block, and where is the...

  • A spring stretches 0.150 m when a 0.300 kg. mass is hung vertically from it. From...

    A spring stretches 0.150 m when a 0.300 kg. mass is hung vertically from it. From this information you can determine the spring constant, k. Next, the spring is set up horizontally with the 0.300 kg. mass resting on a frictionless table. The block is pushed so that the spring is compressed 0.100 m from the equilibrium point, and released from rest. Determine: The spring constant k (in N/m)? The amplitude of the horizontal oscillation (in m)? The angular frequency,...

  • A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10,...

    A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 9.8 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled "x=0m." The drawing also shows a small bottle located 0.080 m to...

  • A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below

    Part A: 10 points each (Questions 1-4) 1. A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below. The amplitude or maximum displacement Xmax is 5m. Calculatea) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x = 2 Cos(45t), where "x" displacement from equilibrium point in meters and "t"...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT