Question

A spring (k= 12 N/m), which can be stretched or compressed, lies flat on a frictionless table. One end of the spring is attac

0 0
Add a comment Improve this question Transcribed image text
Answer #1

equation of the SHM : x = A cos wt where A is 0.14m, w = sqrt(k/m) = sqrt(12/3.3) = 1.907 rad/s

and v = dx/dt = -Aw sin wt

So v = -0.14*1.907*sin (1.907*14.4) = -0.194 m/s

speed = 0.194 m/s answer

Add a comment
Know the answer?
Add Answer to:
A spring (k= 12 N/m), which can be stretched or compressed, lies flat on a frictionless...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass is placed on a frictionless, horizontal table. A spring (k = 165 N/m), which can be stretched or compressed, is...

    A mass is placed on a frictionless, horizontal table. A spring (k = 165 N/m), which can be stretched or compressed, is placed on the table. A 3-kg mass is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x = 7.0 cm and releases it from rest. The mass oscillates in simple harmonic motion. Find the position, velocity, and acceleration of the mass at time t = 3.00 s. Round...

  • A mass of 500 gm is attached to a spring (k = 24.5 N/m) on a...

    A mass of 500 gm is attached to a spring (k = 24.5 N/m) on a horizontal, frictionless surface. A force of 4.90 N pulls the mass to the right, displacing it some distance, x, from its equilibrium position. The mass is then released and oscillates in simple harmonic motion. (A) What is the maximum speed of the mass for this motion? ANSWER: 1.4 m/s (B) What is the position, x, of the mass 0.500 seconds (this is time, t)...

  • A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring,...

    A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring, with a spring constant of 100 N/m is attached to the wall and to the block. A second block with m(2)=0.50 kg is placed on top of the first block. The first block is gently pulled to a position x = + A and released from rest. There is a coefficient of static friction of 0.45 between the two blocks. (a) What is the...

  • A 1.00-kg glider attached to a spring with a force constant 9.0 N/m oscillates on a frictionless

    A 1.00-kg glider attached to a spring with a force constant 9.0 N/m oscillates on a frictionless, horizontal air track. At t = 0, the glider is released from rest at x = -2.80 cm (that is, the spring is compressed by 2.80 cm). (a) Find the period of the glider's motion. (b) Find the maximum values of its speed and acceleration.(c) Find the position, velocity, and acceleration as functions of time. (Where position is in m, velocity is in m/s, acceleration...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • 5. (3 points) A mass m 300g lies on a frictionless horizontal surface and is attached...

    5. (3 points) A mass m 300g lies on a frictionless horizontal surface and is attached to a horizontal spring with a spring constant k 3 Nm. A coordinate system is given such that the r axis is parallel to the motion of the mass under the action of the spring, and the origin is located at the un-stretched position of the spring. The position of the mass is given by: r(t)-A cos(wt + φ) At time t = 2...

  • 5, (3 points) A mass m 300 g lies on a frictionless horizontal surface and is...

    5, (3 points) A mass m 300 g lies on a frictionless horizontal surface and is attached to a horizontal spring with a spring constant k = 3 N/m. A coordinate system is given such that the z axis is parallel to the motion of the mass under the action of the spring, and the origin is located at the un-stretched position of the spring. The position of the mass is given by: x(t) = A cos(wt + φ) At...

  • A light spring with a spring constant k = 316 N/m is attached to a vertical...

    A light spring with a spring constant k = 316 N/m is attached to a vertical wall at one end and a block with a mass m = 0.462 kg at the other end. The block rests on a horizontal frictionless surface and is initially at the equilibrium length of the spring. The block is then displaced from the equilibrium position of the spring in such a manner as to stretch the spring by an amount A = 0.190 m...

  • spring You have a spring, with spring constant K - 50.0 N/m. A mass, m 0.44...

    spring You have a spring, with spring constant K - 50.0 N/m. A mass, m 0.44 kg is attached to the (a) Calculate the work required to compress the spring from x 0 to x-. 0.10 meters. (b) Calculate the work required to compress the spring from x =-0.10 tox·-0.20 meters (it's NOT the same as (an (c) ok, so you've compressed it a total distance of 0.20 meters (Point A on figure). speed at point A is zero. Now...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT