Question

A mass of 500 gm is attached to a spring (k = 24.5 N/m) on a...

A mass of 500 gm is attached to a spring (k = 24.5 N/m) on a horizontal, frictionless surface. A force of 4.90 N pulls the mass to the right, displacing it some distance, x, from its equilibrium position. The mass is then released and oscillates in simple harmonic motion.

(A) What is the maximum speed of the mass for this motion?

ANSWER: 1.4 m/s

(B) What is the position, x, of the mass 0.500 seconds (this is time, t) after it is released?

ANSWER: -0.19 m (opposite side from release point)

I need help finding the right equations to use to find the answers.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A mass of 500 gm is attached to a spring (k = 24.5 N/m) on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • a 2kg mass attached to a spring of k = 32 N/m is free to oscillate...

    a 2kg mass attached to a spring of k = 32 N/m is free to oscillate on a horizontal frictionless surface. the mass is displaced 8 cm to the the right of its equilibrium and set into motion with a leftward push of speed 40 cm/s c) now consider a simple pendulum that undergoes half as many oscillations per unit time as this mass. the pendulum is released from rest at position 1 and oscillates between position 1 and 3....

  • One end of a spring with a force constant of k 10.0 N/m is attached to...

    One end of a spring with a force constant of k 10.0 N/m is attached to the end of a long horizontal frictionless track and the other end is attached to a mass m = 2.20 kg which glides along the track. After you establish the equilibrium position of the mass-spring system, you move the mass in the negative direction (to the left), compressing the spring 1.73 m. You then release the mass from rest and start your stopwatch, that...

  • A 0.535-kg mass is attached to a horizontal spring with k = 108 N/m. The mass...

    A 0.535-kg mass is attached to a horizontal spring with k = 108 N/m. The mass slides across a frictionless surface. The spring is stretched 24.5 cm from equilibrium, and then the mass is released from rest. a) Find the mechanical energy of the system. b) Find the speed of the mass when it has moved 4.13 cm. c) Find the maximum speed of the mass.

  • A mass of 0.28 kg is attached to a spring and set into oscillation on a...

    A mass of 0.28 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.34 m) cos((20 rad/st]. Determine the following (a) amplitude of oscillation for the oscillating mass (b) force constant for the spring N/m (c) position of the mass after it has been oscillating for one half a period (d) position of the mass one-third of a period after it has...

  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

  • A mass of 0.38 kg is attached to a spring and set into oscillation on a...

    A mass of 0.38 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.20 m)cos((10 rad/st]. Determine the following. (a) amplitude of oscillation for the oscillating mass 0.20 (b) force constant for the spring 38 ✔ N/m (c) position of the mass after it has been oscillating for one half a period -20 m (d) position of the mass one-third of a...

  • 5. A 2 kg mass connected to a spring with spring constant k = 10 N/m...

    5. A 2 kg mass connected to a spring with spring constant k = 10 N/m oscillates in simple harmonic motion with an amplitude of A = 0.1 m. What is the kinetic energy of the mass when its position is at x = 0.05 m?

  • A light spring with a spring constant k = 316 N/m is attached to a vertical...

    A light spring with a spring constant k = 316 N/m is attached to a vertical wall at one end and a block with a mass m = 0.462 kg at the other end. The block rests on a horizontal frictionless surface and is initially at the equilibrium length of the spring. The block is then displaced from the equilibrium position of the spring in such a manner as to stretch the spring by an amount A = 0.190 m...

  • QUESTION 10 When a 200 g mass attached to a horizontal spring (k= 25 N/m) is...

    QUESTION 10 When a 200 g mass attached to a horizontal spring (k= 25 N/m) is pushed 10 cm into the spring and released, it undergoes simple harmonic motion. Find the quantities below for this oscillating system: (a) The angular frequency (rad/sec) QUESTION 11 When a 200 g mass attached to a horizontal spring (k-25 N/m) is pushed 10 cm into the spring and released, it undergoes simple harmonic motion. Find the quantities below for this oscillating system. (b) Th...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT