Question

A mass is placed on a frictionless, horizontal table. A spring (k = 165 N/m), which can be stretched or compressed, is placed

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A mass is placed on a frictionless, horizontal table. A spring (k = 165 N/m), which can be stretched or compressed, is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring (k= 12 N/m), which can be stretched or compressed, lies flat on a frictionless...

    A spring (k= 12 N/m), which can be stretched or compressed, lies flat on a frictionless table. One end of the spring is attached to the wall, and the other has a 3.3 kg mass attached. Assume the equilibrium position is labelled zero. A student pulls the mass out to x=14.0cm and releases it from rest at time t=0. The mass oscillates as a SHM. What is the speed of the mass at time t=14.4 s? Answer: Check

  • A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. By...

    A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. By stretching the block and then releasing it, the block-spring system undergoes simple harmonic motion. The block’s position as a function of time is given by                        x = 45.0 cm cos(3pi(t) - pi/3) a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle e. Determine the time when the position x = -18.0cm f. Determine the...

  • A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k...

    A spring-block system sits on a horizontal, frictionless surface. The spring has a spring constant k =2000N/m. The blocks mass is 10.0kg. The mass of the spring is negligible. The spring is stretched out a distance of 20.0 cm and released. The block undergoes simple harmonic motion with a phase constantf= 1.35 rad. a)  determine the timeit takes for the spring to be compressed 6.50cm after it was released b) determine the acceleration of the black at t = 1.50 s.

  • 1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface....

    1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. The spring constant is 280N/m. The block-spring system undergoes simple harmonic motion. At a time t=0s, the position of the block x= +A and its velocity vx= 0. At t=2.50s the position x = -12.0 cm No credit awarded without correct units! a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle d. Write the...

  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • A mass rests on a frictionless surface and is attached to the end of a spring....

    A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring is stretched... I would appreciate to have a detailed explanation for the last one. Thank you in advance. A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring Is stretched. The mass Is then released, and It starts oscillating back and forth...

  • A 1.00-kg glider attached to a spring with a force constant 9.0 N/m oscillates on a frictionless

    A 1.00-kg glider attached to a spring with a force constant 9.0 N/m oscillates on a frictionless, horizontal air track. At t = 0, the glider is released from rest at x = -2.80 cm (that is, the spring is compressed by 2.80 cm). (a) Find the period of the glider's motion. (b) Find the maximum values of its speed and acceleration.(c) Find the position, velocity, and acceleration as functions of time. (Where position is in m, velocity is in m/s, acceleration...

  • A 1.00 kg glider attached to a spring with a force constant 25.0 N/m oscillates on...

    A 1.00 kg glider attached to a spring with a force constant 25.0 N/m oscillates on a horizontal, frictionless air track. At t = 0, the glider is released from rest at x = -2.70 cm. (That is, the spring is compressed by 2.70 cm.) (a) Find the period of its motion. s (b) Find the maximum values of its speed and acceleration. m/s m/s2 (c) Find the position, velocity, and acceleration as functions of time (t). x(t) =   cm...

  • A mass of 500 gm is attached to a spring (k = 24.5 N/m) on a...

    A mass of 500 gm is attached to a spring (k = 24.5 N/m) on a horizontal, frictionless surface. A force of 4.90 N pulls the mass to the right, displacing it some distance, x, from its equilibrium position. The mass is then released and oscillates in simple harmonic motion. (A) What is the maximum speed of the mass for this motion? ANSWER: 1.4 m/s (B) What is the position, x, of the mass 0.500 seconds (this is time, t)...

  • A 2 kg mass is attached to a spring and placed on a frictionless horizontal surface....

    A 2 kg mass is attached to a spring and placed on a frictionless horizontal surface. A horizontal force of 20N is required to hold the mass at rest when it is displaced a distance x = 0.2m from the equilibrium position. The mass is released and allowed to undergo simple harmonic motion. a) Find the force constant k of the spring. b) Find the maximum speed of the mass. c) Find the speed of the mass when x =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT