Question

Could someone please help me with P8: "Compute the moment of inertia of the rod rotating around the pivot." and P10: "Write the period of oscillation of the physical pendulum in terms of its physical properties and compute its actual value."

Problem 3: Torque and Periodic Motion Consider a rigid uniform rod of length d2m and mass m-1kg pivoted at one end. The pendulum is initially displaced to one side by a small angle 8 2 and released from rest. Assume that we only have conservative forces acting on the system, i.e. that the rod is only subject to gravity and a normal force from the pivot. pivot P P8) Compute the moment of inertia of the rod rotating around the pivot. Q6) Which of the following statements is FALSE? A. Gravity has a torque with respect to the pivot B. Normal force has a torque with respect to the pivot C. The net torque on the system oscillates F2) Draw the free body diagram of the system P9) Compute the net torque on the rod By exploiting Newtons second law for the angular motion you should get to an equation of the form d20 For small angles the system will behave as a pendulum, i.e. its motion is subject to a small angle approximation where sin θ ~ θ P10) Write the period of oscillation of the physical pendulum in terms of its physical properties and compute its actual value

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Could someone please help me with P8: "Compute the moment of inertia of the rod rotating...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pendulum consists of a uniform rod of total mass m and length L that can...

    A pendulum consists of a uniform rod of total mass m and length L that can pivot freely around one of its ends. The moment of inertia of such a rod around the pivot point is 1/3mL^2 The torque around the pivot point of the pendulum due to gravity is 1/2mgLsinθ, where θ is the angle the rod makes with the vertical and g is the acceleration due to gravity. a) Write down the equation of motion for the angle...

  • (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m...

    (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m and length L about an axis through its center of mass is (1/12) ml?, what is its moment of inertial about a parallel axis through one of its ends (show your calculation). (b) A physical pendulum consisting of a thin metallic rod of mass m = 200.0 g and of length L = 1.000 m is suspended from the upper end by a frictionless...

  • (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m...

    (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m and length L about an axis through its center of mass is (1/12) mL?. what is its moment of inertial about a parallel axis through one of its ends (show your calculation). (b) A physical pendulum consisting of a thin metallic rod of mass m = 200.0 g and of length L - 1.000 m is suspended from the upper end by a frictionless...

  • 3. Physical Pendulum. A uniform trapezoidal mass of 50 g, moment of inertia 0.050 kg. 0.0107...

    3. Physical Pendulum. A uniform trapezoidal mass of 50 g, moment of inertia 0.050 kg. 0.0107 m2 with center of mass and dimension as shown is pivoted about one end and oscillates about a vertical plane. 70 cm Height = 60 cm Pivot CM d=55 cm 50 cm a) Find the period of oscillation if the amplitude of motion is small and with pivot to center of mass distance of 55 cm. b) Find the period of oscillation if the...

  • Consider the system shown in the figure below. The mass moment of inertia of the bar...

    Consider the system shown in the figure below. The mass moment of inertia of the bar about the point O is JO, and the torsional stiffness of the spring attached to the pivot point is kt . Assume that there is gravity loading. The centre of gravity of the bar is midways, as shown in the figure. Question 2 Consider the system shown in the figure below. The mass moment of inertia of the bar about the point O is...

  • 2. A physical pendulum consisting of a uniform, solid rod rotating around a frictionless fixed axle...

    2. A physical pendulum consisting of a uniform, solid rod rotating around a frictionless fixed axle at one end is held stationary by a force F acting at its end, perpendicular to the rod as shown. The rod is held at an angle θ = 15°, has mass m = 0.25 kg and length -1.5 m. (a) (12 points) What is the magnitude of the force F required to hold the pendulum station ary? (b) (8 points) What was the...

  • Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k...

    Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in the figure. The rod is released from rest in the horizontal position. What are the initial angular acceleration of the rod and the initial translational acceleration of its right end Pivot SOLVE IT Mg A rod is free to rotate around...

  • #2. [Swinging Disk] A uniform circular disk of mass M and radius R is set swinging...

    #2. [Swinging Disk] A uniform circular disk of mass M and radius R is set swinging side-to-side about a frictionless pivot P at its edge (a) What is the disk's moment of inertia about the pivot? (b) Write an expression for the net torque acting on the disk about the pivot when the disk is displaced to the right by angle θ CM (c) Write Newton's 2nd Law for Rotation for the disk when it is displaced as shown. Be...

  • 5. 0/1 points Previous Answers SerPSE10 15.5.OP.025. My Notes A meter stick is attached to one...

    5. 0/1 points Previous Answers SerPSE10 15.5.OP.025. My Notes A meter stick is attached to one end of a rigid rod with negligible mass of length = 0.502 m. The other end of the light rod is suspended from a pivot point, as shown in the figure below. The entire system is pulled to a small angle and released from rest. It then begins to oscillate. (a) What is the period of oscillation of the system (in s)? (Round your...

  • PROBLEM 2.In the sketch a three part physical pendulum is shown, consisting of two massless rods...

    PROBLEM 2.In the sketch a three part physical pendulum is shown, consisting of two massless rods (L=1 m) which make a 90 angle with respect to each other and are constrained to pivot at about an axis that is perpendicular to the paper and at the corner of where they meet. Two unequal point masses aresolidly attached, one at each end. The rod oscillates (when disturbed from equilibrium) due to the downward force of gravity. (ignore friction and air resistance)....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT