Question

2. A 1.25-kg block is initially pressed in N850-N) spring and is set to move down the track shown in the figure. The spring i

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
2. A 1.25-kg block is initially pressed in N850-N) spring and is set to move down...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined...

    6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined plane. The spring, (spring constant 450 N/m) is compressed by 0.50 m.When released, the spring projects the block toward the top of the incline. The coefficient of kinetic friction between the block and the inclined plane is 0.3. (a) What is the speed of the block at the instant the block first returns to its equilibrium length? ans [3.9 m/s] (b) Calculate the speed...

  • A 12-kg block is pressed against a spring (spring constant 620 N/mN/m ), compressing it some...

    A 12-kg block is pressed against a spring (spring constant 620 N/mN/m ), compressing it some distance. The block is released from rest and slides across a track as shown in (Figure 1). While most of the track is frictionless, there is a 55-cm section of track that has a coefficient of friction with the block of 0.3. A bit further on, the track ascends into a hill that is 40-cm tall. Part A: What is the minimum compression of...

  • A 195 g block is pressed against a spring of force constant 1.60 kN/m until the block compresses the spring 10.0 cm.

    A 195 g block is pressed against a spring of force constant 1.60 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline in m) the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block (b) if the coefficient of kinetic friction is 0.360...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 830 N/m . The coefficient of kinetic friction between the floor and the block is 0.45 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 m from its initial position? (At this...

  • A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 890 N/m . The coefficient of kinetic friction between the floor and the block is 0.38 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 820 N/m . The coefficient of kinetic friction between the floor and the block is 0.41 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0140 m from its initial position? (At this...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0380 m . The spring has force constant 810 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

  • A 1.25 kg block is attached to a spring with spring constant 17 N/m. While the block is sitting...

    A 1.25 kg block is attached to a spring with spring constant 17 N/m. While the block is sitting at rest, a student hits it with a hammer and almost instantaneouslygives it a speed of 35 cm/s. What is the block's speed at the point where x= 0.45 A?

  • Problem 2 A 0.5-kg block is pressed a distance d against a horizontal spring of constant...

    Problem 2 A 0.5-kg block is pressed a distance d against a horizontal spring of constant 800 N/m. The block sits on a frictionless horizontal surface When the block is released from rest, it slides along the surface, its speed is 1.6 m/s when it leaves the spring (a) Calculate distance d. 4 cm Suppose that the sliding block (speed 1.6 m/s) crosses a rough section of the surface. The leugth of the section is 1m. The block has a...

  • Please solve quation no. 8.4 A kg block slides on a frictionless curved track The spring...

    Please solve quation no. 8.4 A kg block slides on a frictionless curved track The spring mounted at the right end of the track has a spring constant of 1250 N/m What speed must the block have at point A so that its speed at point B is 2 m/s? When the block runs into the spring, how much will the spring be compressed as it brings the block to a stop? A 10 kg block slides on a frictionless...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT