Question

y-velocity cannot be a onsider a steady, laminar, fully developed (hint: this means function to the motion applied in the y-direction. Assume that the flow is 2D (in the x and y) and that grav of yJ, incompressible flow between two infinite plates as shown. The flow is due of the left plate at a rate of Vo, as well as, a pressure gradient that is points in the negative y-direction. (15 points) Vo List the assumptions of the problem and their significance: A. Using the conservation of mass equation, prove that u

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
y-velocity cannot be a onsider a steady, laminar, fully developed (hint: this means function to the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where...

    1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel plates where the one is moving with velocity y, other one is stationary. There exists pressure gradient in x direction. The bottom stationary plate is a porous plate andfluid is injected into the channel with V velocity. If theflow is steady, fully developed and incompressible flow, derive the velocity profile. Uo Vo 1. As seenfrom figure, there is a laminar and viscous fluid flow betweentwo parallel...

  • Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates,...

    Consider a fully developed laminar flow of an incompressible Newtonian fluid between two infinite parallel plates, separated by a distance of 2B. The z coordinate is the direction of the flow. The width of the plates is 2W (direction y). The coordinate axis is located half of the 2 plates. a) Obtain the distribution of speeds in steady state. b) Obtain the expression for the maximum velocity and write the velocity distribution of part a) as a function of the...

  • : figure below. The plates are fixed and separated by some distance L. Assume incompressible, New...

    : figure below. The plates are fixed and separated by some distance L. Assume incompressible, Newtonian, steady, iD unidirectional fully developed laminar flow. Friction causes pressure loss in the direction of flow. Gravity acts in the negative y-direction 1. (21 points) Fluid fows in the positive -direction between two infinite vertical plates as shown in dhe v(x) a) Reduce the Navier-Stokes equation for this case. Justify all assumptions. auu uau du ou of dx dy dz Oz : figure below....

  • Water is in steady fully developed laminar flow between two horizontal, very wide (W) and long...

    Water is in steady fully developed laminar flow between two horizontal, very wide (W) and long (L) parallel surfaces separated by a distance b. The bottom surface at y 0 moves in the negative x-direction at a speed vo while the top surface at y b is stationary. In addition, a constant pressure gradient dP/dx is acting on the liquid in the x-direction. (a) Write the simplified form of the Navier-Stokes equation and the appropriate boundary conditions. (b) Derive an...

  • Please attempt the FULL QUESTION Question 4 For pressure-driven laminar flow between two horizontal infinite parallel...

    Please attempt the FULL QUESTION Question 4 For pressure-driven laminar flow between two horizontal infinite parallel plates separated by a distance 2h, the velocity components are: v = 0 where U is the centreline velocity and the x-axis is located at the centreline. Assume steady, fully developed and incompressible laminar flow. For the problem above, obtain the final form of the energy equation after applying the given assumptions. (10 marks) b) Identify the fluid temperature distribution T(y), for a constant...

  • Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...

    Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is moving in the opposite direction at speed V. The distance between these two plates is h, and gravity acts in the negative z-direction. There is no applied pressure other than hydrostatic pressure due to gravity. Calculate the velocity and estimate the shear stress acting on the bottom plate Moving...

  • HW 8 Poiseuille flow: Fully developed laminar pipe flow (in cylindrical coordinate) - The simplified z-momentum...

    HW 8 Poiseuille flow: Fully developed laminar pipe flow (in cylindrical coordinate) - The simplified z-momentum equation - The boundary conditions = No slip at r=R The Navier-Stokes equation for 2D (x,y) incompressible flow DV P -Op+uv2V + pg dt - Assumptions: 1. 2. 3. 4. 5. 6. Finite velocity at r=0 - Final velocity solution of Poiseuille flow - The rz component of the NS equation (in cylindrical coordinate) - Volume flow rate (Q = ſ vedA)

  • Problem 2 Find the velocity profile for steady, fully-developed, laminar flow in a circular pipe. Integrate...

    Problem 2 Find the velocity profile for steady, fully-developed, laminar flow in a circular pipe. Integrate this velocity profile to find the mass flowrate through a pipe of length L for a given pressure drop Ap.

  • 4. Consider fully developed Couette flow-flow between two infinite parallel plates separated by distance h, with...

    4. Consider fully developed Couette flow-flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary. The flow is steady, incompressible, and two-dimensional in the xy- plane. Use the method of repeating variables to generate a dimensionless relationship for the x component of fluid velocity u as a function of fluid viscosity , top plate speed V, distance h, fluid density p, and distance y Show all your work. Hint: u...

  • Two horizontal plates with infinite length and width are separated by a distance H in the...

    Two horizontal plates with infinite length and width are separated by a distance H in the zdirection. The bottom plate is moving at a velocity vx=U. The incompressible fluid trapped between the plates is moving in the positive x-direction with the bottom plate. Align gravity with positive z. Assume that the flow is fully-developed and laminar. If the systems operates at steady state and the pressure gradient in x-direction can be ignored, do the following: 1. Sketch your system. 2....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT