Question

Example You are studying pressurized flow of an aqueous solution in a cylindrical tube with pressure difference of 10 Pa between the inlet and outlet. . 1) Under steady state condition, sketch the velocity profile. 2) If the tube diameter decreases to 1/3 of the original diameter, how would the flow rate change? If the pressure difference increases to 20 Pa, how would the flow rate change? 3)
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Example You are studying pressurized flow of an aqueous solution in a cylindrical tube with pressure...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pump generates high pressure water as indicated in fig 3. The Inlet pressure and outlet...

    A pump generates high pressure water as indicated in fig 3. The Inlet pressure and outlet pressure are 110 and 300 kPa respectively. The mass flow rate is 3 kg/sec. The inlet pipe is 1 inch diameter and outlet pipe is 0.5 inch. Neglect elevation difference and internal energy changes across inlet and outlet. a) Culculate velocity İf water at inlet and outlet(5) b) Choose a suitable control volume, and write down and expression for conservation of energy applicable to...

  • A pump increases the water pressure from 100 kPa at the inlet to 900 kPa at...

    A pump increases the water pressure from 100 kPa at the inlet to 900 kPa at the outlet. Water enters this pump at 15 degree C through a 1-cm-diameter opening and exits through a 1.5-cm-diameter opening. Determine the velocity of the water at the inlet and outlet when the mass flow rate through the pump is 0.5 kg/s. Will these velocities change significantly if the inlet temperature is raised to 40 degree C?

  • A Venturi tube may be used as a fluid flow meter. If the fluid flow rate...

    A Venturi tube may be used as a fluid flow meter. If the fluid flow rate in m3/s is 1.6 * 10-3 and the radius R1 = 2.4 *10-2 m of the inlet tube is 2.9 times the radius R2 of the outlet tube, and the fluid is water (ρ = 1000 kg/m3), find the pressure difference P1 - P2 in units of kPa. Enter a number with one digit behind the decimal point.

  • CHE 3315 FLUID MECHANICS PROBLEM SHEET 5: MASS CONSERVATION AND FLOW RATE 1. Determine the mass...

    CHE 3315 FLUID MECHANICS PROBLEM SHEET 5: MASS CONSERVATION AND FLOW RATE 1. Determine the mass flow rate of air having a temperature of 20C and gauge pressure 80 kPa as it flows through a circular duct 400 mm in diameter with an average velocity of 3 m/s. The gas specific constant R 286.9 JK /kg 2. Determine the average velocity of the steady flow at one outlet of a T- junction if the inlet flow speed is 6 m/s...

  • 10. Immiscible fluids Two immiscible incompressible Newtonian fluids flow together through in thedirection two lates separated...

    10. Immiscible fluids Two immiscible incompressible Newtonian fluids flow together through in thedirection two lates separated by a distance H in the y-direction. Let us make thé top plate /move with ection while fixing the bottom plate. At steady state, however, there be a little slip velocity of the more dense fluid only at the lower boundary The flow constant vetocity V in the x-dir is ynidirectional and faminar. For convenience, we take that x is the flow direction and...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • a. Calculate the new flow rate in cm^3/s if the pressure difference increases by a factor...

    a. Calculate the new flow rate in cm^3/s if the pressure difference increases by a factor or 2.2. b. Calculate the new flow rate if a new fluid with 2.6 times greater viscosity is substituted in cm^3/s. c. Calculate the new flow rate if the tube is replaced by one having 3.6 times the length. d. Calculate the new flow rate if another tube is used with a a radius 0.18 times the original. e. Calculate the new flow rate...

  • 3. (a) For the flow of a real fluid (p, u) in a rough (e measures losses lead to a pressure gradient along the pipe - A...

    3. (a) For the flow of a real fluid (p, u) in a rough (e measures losses lead to a pressure gradient along the pipe - Ap/L. Determine an expression for the pressure roughness) horizontal pipe energy Ap ( L pV2 gradient for a pipe of diameter - d, flowing with a mean velocity - V. pVd'd d (b) If for a 75mm diameter pipe flowing with water at 0.25m/s the measured pressure drop is 120Pa/m What will be the...

  • Q5. Sketching a suitable control volume, show that the velocity profile V(r) for steady, fully laminar...

    Q5. Sketching a suitable control volume, show that the velocity profile V(r) for steady, fully laminar flow in a horizontal pipe is given by V(r)- whereis is the pressure drop per unit length of pipe, R is the pipe radius and u the dynamic viscosity of the fluid. (10 marks) Thereafter develop Poiseuille's law for the volume flow rate O in the form SuL (10 marks) Hence show that the head loss h is given by where Vis the mean...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT