Question

Use the worked example above to help you solve this problem. A woman of mass m...

Use the worked example above to help you solve this problem. A woman of mass m = 54.5 kg sits on the left end of a seesaw—a plank of length L = 3.50 m—pivoted in the middle as shown in the figure.

(a) First compute the torques on the seesaw about an axis that passes through the pivot point. Where should a man of mass M = 75.3 kg sit if the system (seesaw plus man and woman) is to be balanced?
  m

(b) Find the normal force exerted by the pivot if the plank has a mass of mpl = 13.1 kg.
N

(c) Repeat part (a), but this time compute the torques about an axis through the left end of the plank.
m

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Use the worked example above to help you solve this problem. A woman of mass m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • PRACTICE IT Use the worked example above to help you solve this problem. A woman of...

    PRACTICE IT Use the worked example above to help you solve this problem. A woman of mass m58.7 kg sits on the left end of a seesaw-a plank of length L = 4.61 m, pivoted in the middle as shown in the figure. (a) First compute the torques on the seesaw about an axis that passes through the pivot point. Where should a man of mass M 69.9 kg sit if the system (seesaw plus man and woman) is to...

  • I need help with exercise and practice it. PRACTICE IT Use the worked example above to...

    I need help with exercise and practice it. PRACTICE IT Use the worked example above to help you solve this problem. m 56.3 kg sits on the left end of a seesaw A woman of mass -a plank of length L 4.68 m, pivoted in the middle as shown in the figure (a) First compute the torques on the seesaw about an axis that passes through the pivot point. Where should a man of mass M = 74.9 kg sit...

  • Need help with part C. Thank you! This is the figure above. However, it has different...

    Need help with part C. Thank you! This is the figure above. However, it has different values than the homework question above. PRACTICE IT Use the worked example above to help you solve this problem. A woman of mass m = 53.6 kg sits on the left end of a seesaw-a plank of length L = 4.39 m, pivoted in the middle as shown in the figure. (a) First compute the torques on the seesaw about an axis that passes...

  • dont know what im doing wrong Suppose a 28.4-kg child sits 0.67 m to the left...

    dont know what im doing wrong Suppose a 28.4-kg child sits 0.67 m to the left of center on the same seesaw as the problem you just solved in the PRACTICE IT section. A second child sits at the end on the opposite side, and the system is balanced. (a) Find the mass of the second child. 8.55 kg (b) Find the normal force acting at the pivot point. 362 Your answers to part (a) and (b) are not consistent....

  • A seesaw consisting of a uniform board of mass and length supports at rest a father...

    A seesaw consisting of a uniform board of mass and length supports at rest a father and daughter with masses my and respectively, as shown in the figure. The support (called the futrum) is under the center of gravity of the board, the father is a distance from the center, and the daughter is a distance from the center A balanced system ME (a) Determine the magnitude of the upward forcen exerted by the support on the board SOLUTION Conceptualize...

  • (Figure 1) The figure shows a simple model of a seesaw. These consist of a plank/rod of mass mr and length 2x allowed t...

    (Figure 1) The figure shows a simple model of a seesaw. These consist of a plank/rod of mass mr and length 2x allowed to pivot freely about its center (or central axis), as shown in the diagram. A small sphere of mass m1 is attached to the left end of the rod, and a small sphere of mass m2 is attached to the right end. The spheres are small enough that they can be considered point particles. The gravitational force...

  • (Figure 1)The figure shows a simple model of a seesaw These consist of a plank/rod of mass mr and length 2x allowed to pivot freely about its center (or central axis), as shown in the diagram.

    (Figure 1)The figure shows a simple model of a seesaw These consist of a plank/rod of mass mr and length 2x allowed to pivot freely about its center (or central axis), as shown in the diagram. A small sphere of mass m1 is attached to the left end of the rod, and a small sphere of mass m2 is attached to the right end. The spheres are small enough that they can be considered point particles. The gravitational force acts...

  • Two children are sitting on opposite ends of a scesaw of negligible mass. If 40 kg...

    Two children are sitting on opposite ends of a scesaw of negligible mass. If 40 kg child is 2.0 m from the pivoted point, how far from the pivot point will the other 30 kg child sit on the seesaw to be at equilibrium? (draw diagram to show vectors) A uniform 2000 kg beam 10 m long supports a 500 kg weight 3 meters from the right support. Calculate the forces on each of the vertical support columns? (draw diagram...

  • Suppose two children are using a uniform seesaw that is 3.00 m long and has its center of mass over the pivot. The first...

    Suppose two children are using a uniform seesaw that is 3.00 m long and has its center of mass over the pivot. The first child has a mass of 30.0 kg and sits 1.40 m from the pivot. (a) Calculate where the second 18.0 kg child must sit to balance the seesaw. (b) What is unreasonable about the result? (c) Which premise is unreasonable, or which premises are inconsistent? Please show work and explanations.

  • Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k...

    Example 10.8 Rotating Rod A uniform rod of length L 1.6 m and mass 2.8 k is attached at one end to a frictionless pivot and is free to rotate about the pivot in the vertical plane as in the figure. The rod is released from rest in the horizontal position. What are the initial angular acceleration of the rod and the initial translational acceleration of its right end Pivot SOLVE IT Mg A rod is free to rotate around...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT